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Goals of atmospheric chemistry

Atmospheric chemistry /s influenced by processes occurring
outside (Sun) and on Earth (natural and anthropogenic
emissions)
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Chemia atmosfery

Chemia fizyczna atmosfery:
Termodynamika chemiczna i kinetyka w fazie gazowe]
Zasady spektroskopii i fotochemii
Termodynamika cieczy i roztworow
Czastki, aerozole i chmury (fizyczne i chemiczne)

wilasciwosci, procesy zarodkowania, powstawanie, wzrost...)
Cykle bio-geo-chemiczne w atmosferze (C, N, O i S)
Zanieczyszczenia atmosferyczne (wfasciwosci, powstawanie,
niszczenie)
Oddziatywanie promieniowania ze zwigzkami atmosferycznymi
Efekt cieplarniany
Atmosfery innych planet (stonecznych) i satelitow

Credits: Daniela Ascenzi
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2 Ma:

Jg’ First Hominins
P 230-66 Ma: 4550 Ma:
M@ NNon-avian dinosaurs Formation of the Earth

> Hominins

Mammals
c. 380 Ma: Land plants
First vertebrate land animals Animals
Multicellular life
Eukaryotes 4527 Ma:

c. 540 Ma:
Cambrian explosion

Prokaryotes Formation of the Moon

c. 4000 Ma: End of the

Late Heavy Bombardment;
/ first life
4

c. 716-660 Ma: \ ) H'?dea,, 4 Ga'ocq,
Sturtian Glaciation :
(Snowball Earth event)

c. 650-635 Ma:
Marinoan Glaciation
(Snowball Earth event) \

c. 3200 Ma:
Earliest start
of photosynthesis

Eony Ziemi

c. 2300 Ma:
First major increase in atmospheric oxygen levels;
first Snowball Earth event (Huronian glaciation)

https://en.wikipedia.org/wiki/Geologic_time_scale



Origin and evolution of the Earth’s
atm Osphere © Daniela Ascenzi, Uni Trento

e Earth and the Solar system formed about 4.5 billion years
ago

e Was the atmosphere the same from the beginning?

o What are the processes that led to the formation of an

atmosphere?

Hadean Archean Proterozoic Phanerazoic

4.0 3.0 2.0 1.0 0
Time Ga (billion years) St
ill man
https://www.smithsonianmag.com/science-nature/travel-through- . y
deep-time-interactive-earth-180952886/ uncertainties

© Daniela Ascenzi



Formation of the Solar system

STEP1: pre-stellar STEP2: protostar —
Size ~5-100 au #
Duration ~ 104 yr? i Outflow
Hot corino - -
Inner ~— ;ZB- v
Envelope g 5
. T ‘
Size ~10% au
Outfl
Duration ~ 10°yr | utflow
gas+dust — icy Icy mant!e
sublimation

mantle formation

STEP3: protoplanetary disk

interstellar clouds:
~1% dust
~99% gas

STEP4: planetary system

I '\ | \ st bl ) /
Size ~10-200 au Dust

planets _ .
comets i Small objects uration ~ 108 yr agglomeration
meteorites | (planetesimals)

asteroids accreted or combined

together to build larger
opjects (planets)



Differentiation of the Earth

e Early Earth was mostly molten («liquid rock») due to high temperatures
(heat released from the accretion process and radioactive decay)

e  Formation of Earth in a great part ocured in a (cosmologically) very
short time — 10 min years

e About 100 min years after the beginning of the formation a catastrophic
event happened: and object of the dimensions of Mars collided with
young Earth. We have to ,remnants” of this event: a relatively great
Moon (that formed in 24 hours) and an inclined axis of rotation.

e Oxygen in the atmosphere appeared very late: for 1-2 bilion years
cyano-bacteries produced it via photosynthesis from CO, , but the intitial
amount has been burried as iron ores FeO, (like on Mars). When iron (in
the crust) has been finished, the rest of O, went to atmosphere.

differentiation of the Early earth
https://www.youtube.com/watch?v=YKM6xhBK738
https://www.slideshare.net/Khanimran5975/how-did-atmosphere-form
https://pages.uoregon.edu/drt/Classes/201 99/Rice/differentiation.html

© Daniela Ascenzi, UniTn



Light - The electromagnetic spectrum

Long wavelength

short wavelength
Wavelength
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Table 1 -- "Known" Lines

Designation||Wavelength (Angstrom) Origin

A 7594 terrestrial oxygen

B 6867 terrestrial oxygen

C 6363 hydrogen (Ha)

Dy 5896 neutral sodium (Na I)

D, 5890 neutral sodium (NaI)

E 5270 neutral iron (Fe I)

F 4861 hydrogen (HP)

H 3968 1onized calcium (Ca II)

K 3934 1onized calcium (Ca II)

https://www.columbia.edu/~vjd1/Solar%20Spectrum%20Ex.html



Spektroskopia
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Fourier Transform Spectrometer at the McMath-Pierce Solar Facility at the National Solar Observatory on
Kitt Peak, near Tucson, Arizona. https://science.nasa.gov/resource/the-solar-spectrum/



Skladniki powietrza suchego (na podstawie Iribarne’a. Cho 1988)

Sktad

atmosfery

Tablica 3.2

Szacowany czas

Lp. Nazwa gazu Symbol Udziat procentowy objetosciowy przebywania
w atmosferze
Skiadniki giéwne
1 | Azot N> 78,09 | - ] 2.10 lat
2 | Tlen o) 2095 | 99.97%
3 |Argon Ar 0,93 J
4 | Dwutlenek wegla CO. 0d 0do 0,033 510 lat
Sktadniki drugorzedne "
Niezmienne koncentracja g
5 | Neon Ne 18 ppm 3. 10° lat
6 | Hel He 5 ppm
7 | Krypton Kr 1 ppm
8 | Ksenon Xe 0,09 ppm
9 | Metan CH, 1,5 ppm 3 lata
10 | Tlenek wegla CcO 0.1 ppm % 0,35 lat
11 | Wodor H- 0.5 ppm =
12 | Podtlenek azotu N.O 0,25 ppm §- < 200 lat




Sktad atmosfery (2)

Zmienne Typowa koncentracja
Ozon O; do 10 ppm w stratosferze
5—50 ppb (w powietrzu
13 czystym),
do 500 ppb w powietrzu
Zzanieczyszczonym, przy
gruncie o
14 | Siarkowodor H.S 0.2 ppb (nad lgdem) = 10 dni
)
15 | Dwutlenek siarki SO, 0.2 ppb (nad Iadem) g 5 dni
16 | Amoniak NH- 6 ppb (nad Igdem) 1+4 dni
Dwutlenek azotu 1 ppb (nad ladem)
17 NO. 100 ppb w powietrzu zanie- 2+8 dni
czyszczonym
18 | Aldehyd mrowkowy CH-0O 0+ 10 ppb

Elzbieta Wotoszczyn, Meteorologia i klimatologia w zarysie, PG, 2009




Atmosfera Ziemi

Table 5.1 Some gases in dry tropospheric air at a pressure of 1 atm

Fraction of volume

Chemical of air occupied Residence time
Gas formula by the species (or lifetime)?
Nitrogen N, 78.084% 1.6 X 107 years
Oxygen O, 20.946% 3000-4000 years
Argon Ar 0.934% —
Carbon dioxide CO; 379 ppmv¢ 3-4 years?
Neon Ne 18.18 ppmv -
Helium He 5.24 ppmv —
Methane? CH,4 1.7 ppmv 9 years
Hydrogen H, 0.56 ppmv ~2 years
Nitrous oxide N,O 0.31 ppmv 150 years

Atmospheric Science, str. 155



Atmosfera Ziemi (c.d.)

Ozone O3 10-100 ppbv Days-weeks

Nonmethane — 5-20 ppbv Variable
hydrocarbons (NMHC)¢

Halocarbons — 3.8 ppbv Variable

Hydrogen peroxide H,0, 0.1-10 ppbv 1 day

Formaldehyde HCHO 0.1-1 ppbv ol ® 1

Nitrogen species NO, 10 pptv-1 ppmv Variable

(NO + NO, (= NOy)
+ NO; + N,O¢ +

HNO; + PAN)
Ammonia NH; 10 pptv-1 ppbv 2-10 days
Sulfur dioxide SO, 10 pptv-1 ppbv Days
Dimethyl sulfide (DMS) CH3SCH3 10-100 pptv 0.7 days
Hydrogen sulfide H,S 5-500 pptv 1-5 days
Carbon disulfide S, 1-300 pptv ~120 h
Hydroxyl radicalf OH 0-0.4 pptv ~1s

Hydroperoxyl radicalf HO, 0-5 pptv —



Importance of spectroscopy & photochemistry

1. Most chemical processes in the atmosphere are
initiated by light
e photolysis of O; generates OH, the most important

atmospheric oxidizer O; + hv —» O, + O(1D)
O(‘*D) + H,O — 2 OH

e solar photodissociation of many atmospheric molecules is
often much faster than any other chemical reactions
involving them. Some examples:

CF,Cl, + hv - CF,Cl + Cl (photolysis of CFCs 1n the stratosphere)

HONO + hv — OH + NO (source of OH in the troposphere)

NO,+hv - 0O +NO (source of O; 1n the troposphere)

NO;+hv—>0,+NO or O+NO, (removal of NO,; generated at night)

Cl,+hv— Cl+Cl (source of Cl atoms)

H,CO + hv — H, + CO or H+ HCO (important step of hydrocarbon
oxidation)

© Daniela Ascenzi, UniTrento



Importance of spectroscopy & photochemistry

2. Absorption of solar (and Earth) radiation by molecules
directly influences the Earth energy balance

e grenhouse effect (CO,, H,O, N,O, CFCs)
e stratospheric temperature inversion (O; photochemistry)

3. Spectroscopy of atmospheric molecules is used to
detect them in situ

e OH is detected via an electronic transition (at 310 nm)
e NH; is detected via its fundamental vibrational transition

at 1065 cm?

© Daniela Ascenzi, UniTrento



Types of radiation important in lower
atmosphere

UV and visible radiation (A=100-800 nm)

e excites bonding electrons in molecules

e capable of breaking bonds in molecules (—
photodissociation)

e UV photons (A=100-300 nm) have most energy, can break
stronger bonds

IR radiation (A=0.8 - 300 um)

e excites vibrational motions in molecules
e With very few exceptions IR is not energetic enough to
break bonds and initiate photochemical processes

MW radiation (A = 0.5 - 300 mm)
e excites rotational motions in molecules

© Daniela Ascenzi, UniTrento



Photophysical and chemical processes

/7° energy (hv)
JW- Photoionization UV-VIS and UV
(e~ emission)
Q photodissociation
) -
U] é (bond breaking) UV-VIS
Q electronic visible (VIS)
excitation
+ 1.8-3.6 (eV))
\N\N\-» ﬁ vibration infrared (IR)
- 100|meV
JW\- &} rotation 10 meV microwaves
© Daniela Ascenzi, UniTrento




Photochemical processes

Several important chemical processes in the
atmosphere are initiated by light absorption

VIS-UV light radicals
Example 1
NO, + —>

O0*+0,+ M- 0O; _
photochemical smog

Example 2 UV light
O; + 0('D) +0,

O(!D) + H,0 — 20H* Major source of OH
(primary oxidant for

organics, VOC)

© Daniela Ascenzi, UniTrento



Photon energies and bond dissociation
energies

One mole of photons in the near UV (A =320 nm) carries
an energy of 374 kJ mol1 (see exercise 2)
(1 eV =96.5k]/ mol)

This energy is sufficient to break:
e weak chemical bonds (e.g. O,-O in ozone ~100kJ/mol)

0, + hv (A< 336 nm) — O(D) + O,

e moderately strong C-H bonds (e.g. formaldehyde ~368
kJ/mol)

© Daniela Ascenzi, UniTrento



ZWigzKi 0 znaczeniu chemicznym

Zwiazki o duzym znaczeniu dla chemii atmosfery

Tablica 3.6

zwigzki siarki zwigzki azotu zwigzki wegla inne
B
HyS NH;, NH |R CH4 NZ H> NZ
802 R
b B oF
SO3, SO% —B co NZ
z NZ
utlenianie co, NZ
NO R
NO, R
NOZ .
: E. Wotoszczyn, Meteorologia, PG, 2009

Ramki oznaczajq zwigzki uczestniczgce w tym samym obiegu.

A  — reagujacy: obieg zwigzany z obiegiem wody, krotki z, zmienny;
£ - pochodzenie gtownie biologiczne;

NZ — o stezeniu niezmiennym (pottrwaty).

RESEARCH ARTICLE | DECEMBER 31 2019
Cross Sections for Electron Collisions with NO, N.O, and NO,

Mi-Young Song &% @ ; Jung-Sik Yoon @ ; Hyuck Cho; Grzegorz P. Karwasz
Yoshiharu Nakamura; Jonathan Tennyson

- Viatcheslav Kokoouline

'.) Check for updates

< Author & Article Information
J. Phys. Chem. Ref. Data 48, 043104 (2019)

https://doi.org/10.1063/1.5114722  Article history &




Reakcje chemiczne: czasteczki, jony, rodniki

Rodnik — atom, czgsteczka, fragment czgsteczki z niesparowanym elektronem:
stgd ogromna reaktywnosc¢ rodnikow

H,O+hv - OH'+H (fotoliza, powstanie rodnika)

O;+hv (A<315nm)— O + O, (fotoliza ozonu, atom tlen w stanie
wzbudzonym — metastabilnym)

O+ H,O— 20H" (de-ekscytacja O, dysocjacja H,O na rodniki OH")
CH, + OH" — CHj; + H,O (transfer protonu)

CH; + O, - CH;00 " (silnie reaktywny rodnik metylo-nadtlenkowy)

CO + OH — CO, + H (utlenianie CO, produkcja H)

H+O, — HOO"* (rodnik nad-hydroksylowy) itd. itp.

L. Falkowska, K. Korzeniewski, Chemia atmosfery, Wyd. UG 1998, str. 33



Rodnik hydroksylowy — detergent (oczyszczacz) atmosfery

CH, + OH' - CH; + H,0
(produkcja wody w stratosferze)

N02 + OH' —> HNO3.
(-wymywanie: NO,)

| caty tancuch reakcji:

CO + OH.+ 02 — C02 + H02

HO, + NO — OH + NO,
(utlenianie NO)

NO, + hv — NO + O (dysocjacja
dwutlenku azotu, produkcja O)

usuwanie
przez deszcze

Rys. 1.8. Re?kcj“:zu.dzialem rodnikéw h i O * 02 . M I 03 " M
Zwiazkow siarki wegla i azoty w : ’ |
prvio ki e Mondban 1955 (produkcja ozonu)
usuwa.nierodnikc‘)whydroksylo

W). Zusoby zwigzkn w atmos . eglaisiarki w wi h reakej ' (Atmospheric Science, srt. 167)
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International Atomic Energy Agency

K ”d‘ Atomic Molecular Data Services
"é‘-*——-é’ Erovided by the Nuclear Data Section

G. Karwasz. IAEA Meeting, Vienna, 23.11.2019




JRecommended” cross sections for
electron scattering with molecules
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© G. Karwasz. IAEA Meeting, Vienna, 23.11.2019



Rationale: edge and divertor plasma

Influence of atomic physics on
EDGE2D-EIRENE simulations of JET
divertor detachment with carbon and
beryllium/tungsten plasma-facing
components

Table 3. Atomic and molecular reactions included in the physics
models used in EIRENE (also valid for D).

NIMBUS-like model Kotov-2008 model

(He+H" — 2e+H' Same reactions as default plus:
(2)H*+H" — H"+H* (99 H; +H* — H* +H;
3e+C' — 2e+C’ (10)H; + H* — HI + H"
(4)e+H; — 3e+2H (11)e+H; — 2e +H3
(5)e+H; — e+ 2H° (replacing (4))

(6)e+H: — 2e+H' +H" (12)e+H; - e+H" +H"
(TYe+H" — H" (13)e + H — 2e + 2H*
(8)2e+H" — e+ H" (14)e + H; — 2H"

No CRM* for (4). (5) and (6) CRM*for(11),(5) and (6)

* Collisional Radiative Model.

Guillemaut et al. Nucl.Fusion 54 (2014) 093012

| D o #79315
#82342

Figure 1. Magnetic equilibria for the shots #79315 and #82342 at

20's and 13 s, respectively.



Data needed:
| Neutrals (H, C, C,, Be, BeH,, CH,)

1. Total cross section
2. Partial cross sections:

elastic scattering e+A —e+A (from 0 eV)
rotational excitation e+CH, (J=0) —» e+CH, (J=2) i.e. 5 meV
vibrational excitation e+AB(v=0) — e+AB(v>0) l.e. 50 meV
electron attachment (dissociative) e+tAB — A"+ B oeV
electronic excitation e+A —e+A’ 5eV
emission lines: A" — A + hv
neutral dissociation e+AB —->A+B+e oeV
emisison from dissociatione + AB - A"+ B +e + hv
lonization e+A —-A"+2e 10 eV
dissociative ionization e+tAB — A+ B*+ 2e 25 eV
ionization into excited states e + A — (A*)" + 2e 15 eV




Energy levels

infrared (IR)

vibration



Total & partial cross sections: C,H,
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NO — high (resonant) vibrational cross
section at low energies: polar glow
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Electronic excitation: optically allowed and
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Electronic excitation cross section (10 "cm”)
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lonization: partial
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Cross Sections for Electron Collisions with Molecular and Atomic Oxygen
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Electronic excitations and transitions between states
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Titan’s atmosphere
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ABSTRACT

This paper is a detailed critical review of the production processes and reactions of N, N*, N3, N**, and N3*
of relevance to Titan’s atmosphere. The review includes neutral, ion—molecule, and recombination reactions. The
review covers all possible active nitrogen species under Titan’s atmospheric conditions, specifically N2 (A 32:).
N (*S).N (3D),N (?P). N3, N* (3P).N* ('D), N;*. and N species, and includes a critical survey of the reactions of
N. N*,N3. N**, and N3* with Na, Hy. D;. CHy4, C;H;, CyHy4. CoHg. C3Hg and the deuterated hydrocarbon analogs,
as well as the recombination reactions of N3, N*, N3*, and N**. Production processes, lifetimes, and quenching by
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Dissociation and Ionization Thresholds of N», as well as Lifetimes of Excited States

Species Threshold Energy Remarks
(eV)
Ny (X IZ+ 0
1) N> (A 32:) 6.22 N> (A) lifetime = 2.37 s (a)
N (*S) + N(*S) 9.76 Not observed
N (2D) + N (45) 12.14 N (2D) lifetime = 13.6 hr and 36.7 hr * (b)
N(P) + N (45) 13.33 N (?P) lifetime = 11.1 s and 10.5 s ** (b)
N (?D) + N (?D) 14.52
3) Ni(X°%) 15.58
N3 (A ’I,) 16.93 N7 (A) lifetime = 13.9 — 7.3 ms *** (c)
N3 (B *Z* 18.75 N3 (B) lifetime = 67 ns (d)
N* 3P) + N (45) 24.29
N*('D) + N 45) 26.19 N* (!D) lifetime = 258 s (e)
N* (3P) + N(®D) 26.68
N*(3P) + N(2P) 27.87 Not observed
N* (18) + N (45) 28.35 Not observed
N3* (X 'Z¥) 42.88 N3* lifetime = 3 s (f)
N* CP) + N* CP) 44.5
N* (2P) + N (45) 53.9 Appearance energy is 55.2 eV (g)

1) Lowest electronic excited state — very long lived

2) Threshold for dissociation into neutral fragments (metastable); 12.1 eV — nitrogen
N, is one of the most stable molecules

3) lonization threshold 15.6 eV (much higher than H atom)



Many reactants, many channels, many but non congruent data

Rate Constant Measurements for the I\.}:ubt:"eal:‘Ng (A 32:,') and N (2D, 2 P) Reactions
Reaction T k Method Reference
(K) (cm®s™1)

N> (A3ZH) + N, 298 <10 x 10718 FP-CL (Callear & Wood 1971)
N> (A 32:) + N> 298 <3.7 x 10716 PR-RA (Dreyer & Perner 1973)
N2 (A3ZH) + N2 298 4.5 x 107V DF (Vidaud et al. 1976)

Reaction T k Method Reference

(K) (em’®s™!)

N> (A3Z) + C3Hg 298 1.3 x 10712 FP-ES (Callear & Wood 1971)

N2 (A3Z}) + C3Hg 298 1.3 x 10712 Compilation (Herron 1999)

N (2D)+ N, 298 <6 x 10713 FP-CL (Black et al. 1969)

N(ED)+N, 298 1.6 x 10714 DF-RA (Lin & Kaufman 1971)

Products:

Recommended yields: (H,CN + H)/(HCN + H + H),

0.90/0.10.

The N (*S) + CHj reaction has three exothermic channels:
N (*S) + CH3; — HoCN + H—1.59 eV
— HCN + H + H-0.50eV
— HCN + H; —5.02 eV.
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Focus: Muons Reveal Record-Breaking
Thunderstorm Voltage

Measurement of the Electrical Properties

e . = of a Thundercloud Through Muon Imaging
March 15,2019 « Physics 12, 25 L P -
A thunderstorm probed with atmospheric muons had an electric potential exceeding one billion volts, much B. Hariharan, A. Chandra, S. R. Dugad, S. K. Gupta,

P. Jagadeesan, A. Jain, P. K. Mohanty, S. D. Morris,
P. K. Nayak, P. 5. Rakshe, K. Ramesh, B. 5. Rao, L.
V. Reddy, M. Zuberi, Y. Hayashi, 5. Kawakami, 5.
Ahmad, H. Kojima, A. Oshima, S. Shibata, Y.
Muraki, and K. Tanaka (GRAPES-3 Collaboration)

Phys. Rev. Lett. 122, 105101 (2019)
Published March 15, 2019

higher than values measured previously,

Features

How to Get Raves for Your Reviews

At a celebration for the 90th anniversary of
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Researchers have documented a thunderstorm producing an electric potential
of about 1.3 billion volts (GV), 10 times greater than the largest value ever reported.

Van der Graaf, spawarka, tuk plamozwy
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Tlen czgsteczkowy — tylko w troposferze,
na wysokosci 35 km — brak absorpc;ji linii 760 nm

Xuiin., 2023, https://doi.org/10.1016/j.eqyr.2023.04.229
Pomiary za pomocg balonu stratosferycznego
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Fig. 5.4 |lllustration of the central role of the OH radical
in the oxidation of tropospheric trace gases. Little escapes
oxidation by OH. [Adapted from Global Tropospheric Chemistry,

Atmospheric Science, str. 163



Bilans azotu

To the stratosphere
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Fig. 5.14 Principal sources and sinks of nitrogen-containing gases in the atmosphere. Numbers alongside the arrows are esti-
mates of average annual fluxes in Tg(N) per year; various degrees of uncertainty, some quite large, are associated with all of the

fluxes. Numbers in square brackets are total amounts of the species in the atmosphere. [Adapted from P. V. Hobbs, Introduction

to Atmospheric Chemistry, Camb. Univ. Press, 2000, p. 148. Reprinted with the permission of Cambridge University Press. |
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Fig. 5.15 As for Fig. 5.14 but for sulfur-containing species in the troposphere. Fluxes are in Tg(S) per year. For clarity, wet and dry
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Bilans ozonu

Achiald, A

T, et al. 2020. Tropospheric Ozore Assessment Report: A critical
review of changes in the tropospheric ozone burden and budget from 1850 to
2100. Flem Sci Anth, 8: 1. DOI: ht tpsy/idoiorg/10.1525&kmenta 2020034

1960s

0,+hv—O(*P)+O(*P) A 1980s
O(*P)+Q,+*M—M+QO,

STT

Stratophere-Troposphere
Exchange

@ i

OH+CO+0,~ HO,+CO,
HO,+NO — OH+NO,
NO,+hv—~NO+O(*P)

Figure 1. Schematic illustration of how our understanding of the chemical and physical processes controlling
tropospheric ozone has evolved. The panels highlight the key processes identified in the different time periods.
The labeling of dates in the subpanels (A-D) is indicative. DOI: https://doi.org/10.1525/elementa.2020.034.f1



Achitald, AT, et al. 2020 Tropospheric Ozore Assessment Report: A oritical

]
B I I a n S OZO n u review of changes in the tropospheric ozone burden and budget from 1850 to
2100. Flem Sci Anth, 8: 1. DOI: ht tps:/doiorg/10.1525kemeanta 2020034

Art. 8(1), page 6 of 53 Archibald et al: TOAR-Ozone Budget
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Figure 2. Pathways of ozone deposition on vegetated surfaces (with or without the resistance analogue used to quantify
and model the processes). DOI: https://doi.org/10.1525/elementa.2020.034.f2



Bilans ozonu

3.1. The photochemical formation mechanism of
tropospheric ozone

It is well established that tropospheric ozone is mainly
a secondary photochemical product that results from the
photolysis of NO..

(R1a) RO,/HO, + NO — NO, + RO/OH
(R1b) RO, + NO + M — RONO; + M (minor)
(R2) NO, + hv — NO + O(°P) (A < 400 nm)
(R3) 0, + OCPP) + M — O3 + M

RO,/HO, are organic peroxy radicals (R refers to an
alkyl, aryl, or alkenyl group) and the hydroperoxy radical,
respectively. These compounds are key intermediates in
the production of ozone in the troposphere (see Section
5.5 for more details) as they convert NO into NO, without
destroying ozone. They are formed from the oxidation of
VOCs and CO with OH. RONO, represent organic nitrates
that can act as a local sink of oxidants and a reservoir for
ozone precursors. The OH radical is the primary oxidant in
the troposphere, for which ozone itself is the primary
source via reactions R4 and R5.

(R4) 03 -1 hv — O(lD) T 02 ()\. % 315 nm)

Architald, AT, et al. 2020 Tropospheric Ozore Assessmeant Report: A aritical
—mm of "a"t;- in the tropospheric ozone burden and budget from 1850 to
00. Flem Sci Anth, 8: 1. DOI: ht tps//doiorg/10.152 --I-=-r-=r a. 2020034

(R8) HO, + O3 — OH + 2 0,
(R9) OH + 03 — H02 + 02
(R]O) H02 & & H02 = HzOz = 02
(R11) HO, + RO, — ROOH + 0,

In addition to these chemical sinks of ozone, there are
a number of physical sinks of ozone—deposition to sur-
faces (see Section 2.1) and uptake (including of oxidant
reservoirs) onto particles (see Section 5.6)—that remove
ozone from the troposphere.

Owing to the fast photolysis of NO, during the day,
reactions that convert NO into NO, without the consump-
tion of ozone are considered as ozone producing reactions
(i.e.,, R12a), and reactions that convert NO, into other
members of the NO, family (the molecules of oxidized
nitrogen [NO,| excluding NO and NO,) are considered as
ozone destroying (e.g., R7 and R12b). Experimental evi-
dence for a minor, but potentially important, channel of
the reaction between HO, and NO producing nitric acid
(HONO,; channel 12b) has been reported (Butkovskaya et
al., 2005, 2007, 2009). The main sink of HONO, is surface
deposition.

(R12a) HO, + NO — HO + NO,
(R12b) HO, + NO + M — HONO, + M



December—February

Ozon w troposferze

180 60W 0 60E 180

March-May

180 120W 60W 0 60E 120E 180

June-August

Global distribution of fires detected by satellite in September 2000. [Image courtesy of European Space
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Powstawanie | transport ozonu

DAVID G. ANDRE W5

An Introduction to
ATMOSPHERIC
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4/10/2004
. . ,Dziura” ozonowa oznacza, ze
‘ratospiere ozonu jest mniej tam, gdzie

M\\ powinien by¢ jego rezerwuar,

czyli nad Antarktyda

Tropo sphere https://ozonewatch.gsfc.nasa.gov/facts/hole_SH.html
I
Summer Pole Equator Winter Pole

Height/km
. o (o8] BN W N ~J o0 O
o O O o O o o o O
| | | | | | ] ] |

l A schematic plot of the Brewer-Dobson circulation (lower four arrows, in the stratosphere) and the
solstitial mesospheric circulation (upper two arrows). The shaded ellipse indicates the
approximate position of the 200K isotherm near the equatorial tropopause, i.e. the “cold trap’

Identified by Brewer (1949).  Ozon, powstajgcy w 200 K w dolnej stratosferze nad rownikiem
(putapce) jest transportowany ku biegunom; poprzez mezosfere cyrkuluje miedzy
biegunami (pokazana cyrkulacja w czasie przesilenia letniego)



,Dziura” ozonowa nadal istnieje,
ale powoli sie zabliznia
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Dziura ozonowa

physicsweorld.com

This image from NASA's
Aura satellite shows the Antarctic ozone
hole in September 2006, when it was at
its peak. Green shows a heaithy layer of
ozone while blue/ purple indicate an area
of low ozone larger than the size of
North America. A previous NASA image
from December 1979, when the use of
chlorofluorocarbons (CFCs) was only just
starting to rise, was uniformly green. The
ozone layer is incredibly valuable as it
absorbs 97-99% of incident high-
frequency ultraviolet light, a high dose of
which can be harmful to living things.
Although the average hole size is now
decreasing, a full recovery of ozone over
the Antarctic is not expected until
about 2050.

NASA Ozone Watch

Ozon wymaga niskich temperatur do jego stabilizacji: powstaje wiec gtdwnie w rejonie
biegundw. Aerozole uzywane w kosmetykach (CFC) spowodowaty katalityczny rozktad
Ozonu. Dziura powoli zabliznia sie, ale potrwa to jeszcze dziesigtki lat.
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Antroposfera: sadza

paysicsworid_com

This image from a NASA
computer simulation shows the global
spread of airbome soot on 26 September
2009. Based on measuraments of how
much incoming sunlight the particles
absorbed, areas thick with soot are
shown in white, while lower
concentrations are transparent purple.
Soot is known to climate scientists as
“black carbon” because it absorbs
visible light and could contribute
significantly to global waming. its
impact is particularly strong in Asia,
with emissions from coal, diesel and
biomass, used for axample in cooking.

Zapylenie miast chinskich (i do niedawna japonskich) jest takie, ze Stonce wida¢ tam
tylko przez kilka dni w roku.




Czym ma tak naprawde oddychamy?

Trento,
14.03.2003, godz. 8:00

Foto GK



Zanieczyszczenie atmosferyczne
(lokalne):

- Tlenek wegla CO 30 mg/m?

- Mikropyty (PM10) 150 pg/m3
- Tlenki azotu (NO, NO,) 200 ug/m?
- Dwutlenek siarki (SO.,) 15 mg/m°

-ozon O, 180 pg/m? (dla roslin 150 pg/m?)
- Weglowodory (benzen) 15 pg/m?



Modelowanie zanieczyszczen = prewencja

Viabilita attuale Traforo Mezzolombardo
14000 14000
12000 12000
10000 10000
1 4,00000E-004
- By 8000 D
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0 00000E+000 5 0D000E-005
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\ 0
0 2000 4000 6000 0 2000 4000 6000

Model: G. Karwasz, Provincia Autonoma di Trento, 1999
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Zanieczyszczenie lokalne (weglowodory)
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Analiza;: GK



Zanieczyszczenie lokalne (weglowodory — ruch drogowy)
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Analizal: G. Karwasz, Provincia Autonoma di Trento, 1999



Zanieczyszczenie localne — dwutlenek azotu

500

Lavis - Biossido di azoto
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Analiza: G. Karwasz, Provincia Autonoma di Trento, 1999
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Londyn, 2002

G. Karwasz, Rapporto per Comune di Trento, 2002
Foto: Maria Karwasz



XXV-lecie PRL

G. Karwasz, Wyktad otwarty, UMK, 2017
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Polska ma najbardziej zanieczyszczone
powietrze w UE

fot. whurmis, flickr.cc G Karwasz’ Wyk*ad Otwarty’ UMK, 201 7

Polska od lat ma najbardziej zanieczyszezone powietrze w Unii Europejskiej - alarmuje NIK. Izba wskazuje, ze

o https://www.forbes.pl/csr/polska-ma-najbardziej-zanieczyszczone-powietrze-w-ue/sfb3him




Eksport smogu miejskiego
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Map 10.1 Population-weighted concentration field of annual mean BaP in 2012
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Zrédto: Komisja Europejska. Dane z 2012 roku

1/2 @ ,Polska w czotéwce

Polska na czele krajow
zatruwajacych powietrze
w Unii Europejskiej

1/2. Polska na czele krajow

zatruwajacych powietrze w Unii
Europejskiej

Stezenie benzopirendw w powietrzu

-~ A

krajow
Zzanieczyszczajgcych
powietrze w Europie”

Mapa pokazuje stezenia
benzopirenu
(rakotworczego)
pochodzgcego ze
spalania wegla.

Polska nie tylko
produkuje ogromng ilosc¢
benzopirenu (Srednie
stezenie dziesiecC razy
powyzej dopuszczalnego
limitu), ale takze
,eksportuje” go
swobodnie do sgsiadow.



Polska: jakos¢ powietrza (l)

Polska od lat ma najbardziej zanieczyszczone powietrze w Unii Europejskiej - alarmuje NIK. I1zba

wskazuje, ze mimo iz samorzady wydawaly pienigdze na walke z zanieczyszczeniami, jakos¢

powietrza, ktorym oddychamy, poprawita sie tylko nieznacznie

Najwyzsza Izba Kontroli w opublikowanym w poniedziatek raporcie podkreslita, ze niespetnienie
standardow jakosci powietrza, ktore sa okreslone w prawie unijnym (tzw. dyrektywa CAFE), moze

kosztowac Polske nawet 4 mid zt kary.

e LA
AEMLAMA

3. Krakéw

10. Katowice

Izba powotata sie na dane OECD, ktore wskazujg, ze ponad 3,5
min 050b na Swiecie przedwczesnie umiera z powodu chordéb
wywotywanych zanieczyszczonym powietrzem. W Polsce
sZacuje sie, e rocznie z tego powodu moze tracic zycie nawet
A5 tys. 0s0b.

"Niestety dane te, choc s3 szokujace, nie powinny dziwic, skoro
Polska od lat ma najbardziej zanieczyszczone powietrze w catej
Unii. Wedtug informacji Europejskiej Agencji Srodowiska az &
polskich miast znalazto sie w pierwsze] dziesigtce miast

europejskich z najwieksza liczba dni w roku, w ktdrych
przekroczono dobowe dopuszczalne stezenie pytu PM10
(pozostate cztery miasta sg w Butgarii)” - dodano w raporcie.



Polska: jakos¢ powietrza (ll)
FOCUS.pl > 1/2

Map 10.1 Population-weighted concentration field of annual mean BaP in 2012
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I w powietrzu
NIK wskazata, ze najwiekszym problemem dla jakosci powietrza w Polsce jest ponadnormatywne stezenie

pytu zawieszonego (PM10 1 PM2,5) oraz benzola)pirenu (B(a)P). "Wysckie stezenie pytu zawieszonego ———
powoduje i pogtebia choroby ptuc i uktadu krazenia. Z kolei benzo(a)piren jest zwigzkiem silnie
rakotworczym. Tymczasem we wszystkich kontrolowanych miastach w 2013 r. dopuszczalne stezenie
benzo{a)pirenu przekroczone zostato sSrednio o 500 proc. Najwyzsze stezenie B{a)P odnotowano w Nowym

Saczu - limity przekroczone jedenastokrotnie, a w Glubczycach (w woj. opolskim) dziesieciokrotnie. Z kolei

w czterech miastach (Krakow, Nowy Sacz, Katowice | Dabrowa Garnicza) przekroczone zostato
srednioroczne steZzenie PM10. W skali kraju w latach 2010-2013 przekroczono dopuszczalne poziomy pytu
PM10 w ponad 75 proc, wszystkich stref, w ktarych dokonuje sie oceny jakosci powietrza, a w przypadku
benzol{a)pirenu w ok. 80 proc. stref" - czytamy w raporcie.



Benzo-piren a rak

e | () www.sciencedirect.com/science/article/pii/S01604120100022787via%3Dihub

:= Outline “;1 Download Export

exposure (Maynard et al., 1997).  PAH=poli-aromatic-hydrocarbons

The UK Expert Panel on Air Quality Standards (EPAQS) used the scientific expert
judgment approach to set the UK PAH standard for ambient air. EPAQS considered
the PAH mixture described in an epidemiological study in an aluminum smelter in
Canada, where high exposures were linked to lung cancers (Armsirong et al., 1994),
as the best starting point for the derivation of the standard. Armstrong et al. (1994)
identified that an exposure to of a mixture of PAH compounds represented by 0.25-
2.5 ug/m3 BaP during a working life (40 years) was associated with a 50% increase in

the risk of lung cancer. The lower bound of this range, 0.25 ug/m? of BaP, was taken

as representing the lowest observed adverse effect level (LOAEL). Three safety
factors of 10 were used to account for (a) moving from a LOAEL to a no observed
adverse effect level (NOAEL), (b) extrapolating from a working life exposure to an
entire lifetime exposure, and (c) accounting for the range of sensitivity to carcinogens
likely to exist in the general population. Hence, EPAQS selected the value of

0.25 nlg:_;frn3 of BaP as the UK air quality standard (EPAQS, 1999).




Benzopiren w Polsce: 4 ng/m?

Map 10.1 Population-weighted concentration field of annual mean BaP in 2012

Figure 6.1 Attainment situation for BaP in 2013 in the EU-28

— Mieszkamy w komorze benzo-pirenowej?
10,01

751

Motes: The graph | bated on the afihual mean cancentrstion values for each Member State, For eath country, the lowest, highest shd medlan
wisluies (in ng/me) ot the Stations are ghden. The rectangles ghve the 25 and 75 percentiles. AT Z5% ol the statlons, levels are bedow (e

lawer percentile; al 25% of the stations, concenirations are sbhove the upper percentile, The Ladge value el by EL [egislation is marked
by the red Be. The estifmated air quaily referemce el is marked by the green line

Sourca: Based an Alr Quality e-reporting database [EEA, 201 5a).
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