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Abstract: Protonated hydrogen cyanide, HCNH™ is one of the most important molecule of interest
in the astrophysical and astrochemical fields. In fact, this molecule not only plays the role of a
reaction intermediary in various types of interstellar reaction, but was also identified in Titan’s
upper atmosphere. So, the cross sections for the dissociative recombination (DR) and vibrational (de-
Yexcitation (VE and VDE) of HCNH™ and its CNH2+ isomer are computed using a theoretical approach
based on the combination of the normal modes approximation for the vibrational states of the target
ions and the UK R-matrix code to evaluate electron—ion scattering matrices for fixed geometries of
ions. The theoretical convoluted DR cross section for HCNH agree well with the experimental data
and a previous study. It is also found that the DR of the CNH isomer is important which suggests
that this ion might be present in DR experiments of HCNH ™. Moreover, the ab initio calculations
performed on the HyCN™ isomer predict that this ion is a transition state. This result was confirmed
by the study of reaction path of the HCNH™ isomerization that was carried out by evaluating the
intrinsic reaction coordinates (IRC). Finally, thermally averaged rate coefficients derived from the
cross sections are provided for temperatures in the 10-10000 K range. A comprehensive set of
calculations is performed to assess uncertainty of the obtained data. These results should help in
modelling non-LTE spectra of HCNH™, taking into account the role of its most stable isomer, in
various astrophysical environments.

Keywords: molecular cation reactive collisions; dissociative recombination; vibrational excitation;
R-matrix theory; interstellar medium; Titan’s upper atmosphere; isomer

1. Introduction

HCNHT is an important species in astrophysical environments such as dark inter-
stellar molecular clouds (Sgr B2[1], TMC-1[2]), proto-star (L483[3]) or pre-stellar and mass
starforming cores[4,5]. This molecule was also detected by the Ion and Neutral Mass
Spectrometer (INMS) instrument aboard the Cassini probe in the upper atmosphere of
Titan, Saturn’s largest moon[6,7]. HCNH™ could be an important precursor of the aerosols
(Tholins) present on this satellite. The latter may themselves be the origin of molecules of
prebiotic interest such as amino acids, nucleic acids, sugars or even more complex molecules
such as proteins[8,9]. HCNH™ is the simplest protonated nitrile, known as N-Protonated
HCN or Protonated hydrogen cyanide. In the interstellar medium (ISM), it was often
postulated that HCNHT is at the origin of the thermochemically unrealistic HNC/HCN
abundance ratio [10]. HCN is one of the most interesting molecules for cosmochemistry, as
it is considered by some to be one of the first molecules present on the prebiotic earth [11]
and could, following polymerization and contact with water and oxygen, give rise to more
complex molecules known to be the building blocks of life [12]. Observations in cold dark
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clouds report values for the HNC/HCN isomer abundance ratio ranging from 0.015 to 5
[13,14] whereas theoretical study indicated that this abundance ratio should have an upper
limit of one [15].

Due to the relatively large abundance of electrons and HCNH™ in the ISM[10], colli-
sions of HCNH™ with electrons play a significant role, in particular, leading to dissociation
(DR - dissociative recombination), vibrational (de-)excitation (VE, VDE) and rotational
(de-)excitation of HCNH™. The DR process leads to the formation of HCN or HNC while
VE and VDE compete with the latter. Recent studies attempt to reproduce the observed
HCNH™ abundance, also responding to controversies over the HNC/HCN abundance
ratio, within dense cold regions taking into account in their chemical models not only the
DR process of HCNH ' [4] but also other formation paths for HCNH™ (following NHj3
+ CT, for instance) [5], or destruction paths of HCN (in collision with oxygen, for exam-
ple) [16], or excitation of HCNH™ (in collision with H; and He, for example, accounting
for the hyperfine structure of the target ion) [17]. In these studies, authors provided the
updated HCNH™ abundances in better agreement with the observations. Despite these
enhancements, discrepancies between observations and predictions remain unresolved
which requires a better understanding of the HCNH™ chemistry in particular the DR
process occurring in HCNH™ and its isomers.

The DR mechanism of HCNH ™ was also subject to controversy. Indeed, Hickman et al.
[18] supported that direct dissociative recombination process (when a doubly-excited state
dissociating into neutral fragments crosses the ground state of the ion near its equilibrium
geometry) could occur at low energy while Ngassan and Orel [19] found that the direct DR
cross section is lower than the experimental value. Latter, Douguet et al. [20] demonstrated
that the major contribution to the DR cross section at low electron collisional energies
came out from indirect mechanism (electron captured into a vibrationally excited Rydberg
state of the neutral molecule that couples to the doubly-excited state dissociating into
neutral fragments). In that study, authors employed a theoretical approach based on
the multichannel quantum defect theory (MQDT)[21,22]. After computing the ab initio
potential energy surface (PES) of HCNH™ and its series of Rydberg energies, the quantum
defects are obtained from energies of excited Rydberg states. In the present study, we
will employ instead of the quantum defect, the scattering matrix obtained from the UK
molecular R-Matrix code (UKRMol) [23,24]. Thus, we revisited the DR cross section of
HNCH™ and compared it with the available experimental studies of Semaniak et al.[25],
carried out at the heavy-ion storage ring CRYRING. As the authors of this study cannot
exclude a possible involvement of other isomers, we also provided the first calculations for
the CNH, isomer in its singlet state. This isomer was little studied, even by the scientific
community interested in Titan. However, some authors such as Fortenberry et al. showed
that this molecule could be present in a kinetically favorable potential well[26]. Moreover,
ab initio calculations of the singlet ground state of the H;CN™ isomer was found with one
imaginary frequency suggesting that the ion is unstable. This was confirmed by performing
the HCNH™ isomerization reaction path. Finally, the four lowest triplet states for isomers
of HCNH™ are not treated in the present study because these states are situated at very
high energy, at least 5.3 eV above the singlet ground state of HNCH™ [25,27].

The objective of this study is to demonstrate that the DR cross section of CNH; by
electron impact is not negligible at low energy. Thus, this isomer could play an important
role in the chemistry of HCNH™, and must therefore be taken into account in chemical
models that attempt to explain the thermochemically unrealistic HNC/HCN abundance
ratio in the interstellar medium. The article is organized in the following way. After the
above Introduction, Section 2 describes the theoretical approach used in the present calcu-
lations. The obtained cross sections and the corresponding rate coefficients are displayed
and discussed in Section 3 while Section 4 concludes the study.
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2. Theoretical approach

As the basic formalism employed in our model is presented in detail in Refs.[28-32],
we only highlight in this section its major ideas.

2.1. The properties of HCNH™ and its Isomers
2.1.1. HCNH™" and its CNH; Isomer

HCNH™ is a closed-shell molecule, having the symmetry of the Co, point group at
equilibrium and ground state electronic configuration

X 1% : 102202 302 402 502 1724,

At low electron collisional energies, the ion can be characterized by five normal modes of
vibration : three stretching modes v1, v, and v3 with respective frequencies w1, w; and w3
and corresponding coordinates 41, 42 and 43, and two doubly degenerate transverse modes
v4 and vs with a lower frequencies wy and ws, and coordinates (q4x,q4,) and (gsx, qsy)-
The normal coordinates and the related frequencies are obtained using the cc-pVTZ basis
set centered on each atom and including s, p and d orbitals. Performing Coupled Cluster
Singles, Doubles and Triples (CCSD(T)) calculations in the Cy, symmetry group, using the
MOLPRO suite of codes [33], we found an equilibrium geometry of the ion for values of
bond lengths (71, 72,73) and bond angles (61, 6>, 03) given in Table 1. First columns of this
table compare results obtained in the present calculation with theoretical data while the
upper panel of Figure 1 shows normal displacements for each mode of HCNH™ with the
bond lengths and bond angles of Table 1 depicted for the first normal mode.

Table 1. Bond lengths (r1, , and 3 in A) and bond angles (61, 6, and 03 in degree) at the equilibrium
geometry of HCNH™ and its CNH; isomer, both displayed in Figure 1. The total energies are given
in atomic units. Data obtained in this study are compared to the calculations of Ref.[34].

HCNH* CNH,
Geometry This study Calc. This study Calc.
1 1.0803 1.0804 1.2514 1.2514
) 1.1403 1.1403 1.0326 1.0327
3 1.0139 1.0140 1.0326 1.0327
01 180 180 120.979 120.988
0 180 180 120.979 120.988
03 0 0 118.041 118.024
Total energy -93.557075 -93.557076 -93.475788 -93.475788

N-protonated hydrogen isocyanide CNHJ is one of the isomer of HCNH ' belonging
to the Cy;, point group at equilibrium geometry. Its ground state electronic configurations is

1A : 143 2% 3a% 4a3 163 163 5a2.

This isomer has six non-degenerate normal modes v; with respective frequencies w; and
corresponding coordinates ¢; (i = 1,2,3,4,5,6). Analogously, the normal coordinates and
the related frequencies are obtained using the CCSD(T) method and cc-pVTZ basis set.
Table 1 gives the obtained calculations. Bond lengths and bond angles are given in Table 1
and normal displacements for each mode are shown in Figure 1. The calculations agree
pretty well with data available in the literature.
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Figure 1. Normal modes of (a) HCNH ™ with (b) its CNH, isomer. Bond lengths and bond angles of
each ion (listed in Table 2) are depicted on the first normal mode sketch of each panel. The arrows
indicate the direction and magnitude of displacements for each mode. Note that arrowheads are not

shown for the displacements of relatively large magnitudes.
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Table 2. Vibrational frequencies (w; in cm~!) obtained in this study for HCNH* and its CNH;
isomer are compared with previous data available in literature (experimental or theoretical data).

HCNH™*

Frequency, w;
Normal mode, v; Symmetry Normal coordinate, q; This study Exp.[34]

NH stretch, 11 p 71 3645.07 3482.8

CH stretch, v, % 92 3316.36 3187.9

CN stretch, v3 ¥ q3 2179.51 2155.7

HCN bend, v4 II Jax, Gay 805.33 801.6

HNC bend, v5 IT q5x, 95y 647.86 645.9
CNH,

Frequency, w;
Normal mode, v; Symmetry Normal coordinate, q; This study Calc.[34]

" Ay M 3317 3318
vy Ay 0 1723 1724
Vs Aq 73 1394 1394
Vg Bl qa 723 725
s By 75 3405 3405
Vg Bz de 630 627

2.1.2. The H,CN* Isomer

In the literature [27,35,36], it was reported the existence of another singlet state of the
HCNH™ isomer with hydrogen atoms next to carbon, also known as hydrocyanonium
cation HyCN™ which belongs to the Cy, point group at equilibrium geometry. Its ground
state electronic configuration is

VA1 : 1a3 243 3% 4a3 103 543 163,

with a total energy of -93.440025 (atomic units). This isomer have also six non-degenerate
normal modes v; with respective frequencies w; and corresponding coordinates g; (i =
1,2,3,4,5,6). Performing the Molpro calculations, the normal coordinates and the related
frequencies was obtained using the CCSD(T) method and cc-pVTZ basis set. Table 3
compares the results with data available in the literature [34]. As expected, we found that
the H,CN™ isomer has the normal mode v with imaginary frequency wg corresponding to
the torsional movement of the H atoms and to the N-H stretch. This result suggests that
the isomer is unstable with respect to isomerization into the HCNH™ linear form.

To verify the nature of the eventual transition state obtained, we determined the
reaction path throughout the intrinsic reaction coordinates (IRC) by invoking the Quadratic
Steepest Descent Reaction Path method (QSDPATH) implemented in MOLPROJ[33]. The
IRC is defined similarly to the minimum energy path (MEP) but instead of the steepest-
descent path on the potential energy surface, IRC follows the maximum instantaneous
acceleration from the transition state (TS) down towards a local minimum. IRC is in fact
the solution of a differential equation of the mass-weighted Cartesian coordinates with
respect to the coordinate along the IRC. See for example Ref.[37] for more details.

Starting from the equilibrium geometry of HCN™, obtained after optimisation (see
Table 3), we performed IRC calculations and found that the linear structure HCNH™ is
predicted to lie lower by 3.18 eV. The lower panel of Figure 2 shows the total energy (in
atomic units) and the upper panel the bond lengths and angles along the IRC (in atomic
units). Following the positive direction in reaction path (blue arrow in the lower panel
of the figure), the migration of a hydrogen atom (here H1) from carbon to nitrogen led
to the formation of the more stable linear isomer HCNH™ with bond lengths and angles
characteristics given in Table 1. Analogously, the migration of the second hydrogen atom
(H2) to nitrogen, in case of negative IRC direction (violet arrow in the lower panel of the
figure ), gives the same molecular ion configuration. The sketch in the lower panel of that
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figure displays both migration processes with a color code according to the bond length
and angles curves. Thus, the reaction path of the HCNH ™ isomerization confirms that the
H,CN™ isomer is a transition state which could explain why it has not yet been identified
in interstellar space.

IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
; (5N

B }%&M%Bl %vvvmwwc'm?; :
i v A v _-' 7 ~
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N~ ¢ r - 7o}
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D 15_ ‘. v A [ 7 ﬁ
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. .v A . _
= S N —50 '8
A PP LI 1 8
- * % ]
[ -a.f..fffff?.ﬁf?% ] A
| i
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-15 -10 -5 0 5 10 15 20 25
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Figure 2. Reaction path of the HCNH™ isomerization. The upper panel of the figure shows the
dependence of bond lengths (maroon-rcy, red-rcr and green-rcp ) and bond angles (blue-fy,
violet-6, and orange-63) as functions of IRC. Bond lengths are given in circle, square and star symbols
with values on the left axis, while the bond angles are given with triangle symbols with values on the
right axis. In the lower panel, a sketch of the migration process of hydrogen atoms from carbon to
nitrogen is depicted according to the same color code. The total energy is displayed in black circles.
Whatever the direction in the IRC, positive in blue arrows or negative in violet arrows, the migration
process leads to the most stable linear isomer HCNH™ (see Table 1).

2.2. Fixed-geometry Scattering Matrix

In our model, the fixed-nuclei reactance matrix (K-matrix) is employed to describe the
e-HCNHT isomers collisions. It is obtained numerically for each geometry configuration

148

150



Version October 28, 2024 submitted to Journal Not Specified 7 of 17

Table 3. Vibrational frequencies (w; in cm 1) obtained in this study for the H,CN™" isomer are
compared with previous calculations available in literature. Note that the normal mode vg has an
imaginary frequency ws. Table below gives Bond lengths (in A) and bond angles (in degree). A
sketch of the employed coordinates is given in the lower panel of Figure 2

Frequency, w;
Mode, v; Symmetry Normal coordinate, q; This study Calc.[34]

v Ay q1 2862 2859
1%) A] q2 1843 1843
V3 A1 q3 1034 1025
V4 B1 q4 810 804
Vs B, g5 2897 2892
Ve Bz qe 1437 1456
Geometry This study Calc.[34]
reN 1.2089 1.2089
rCH1 1.1169 1.1168
rCHD 1.1169 1.1168
61 119.950 119.927
) 119.950 119.927
63 120.099 120.145

of the target molecule using the UK molecular R-Matrix code (UKRMol) [23,24] with the
Quantemol-N expert system [38].

R-matrix calculations are performed in the C; point group for a given ion in its
ground electronic state. The four 14?242 core electrons are frozen and ten electrons are
kept distributed in the active space including 3 — 112 molecular orbitals. For each ion, a
total number of 5292 configuration state functions (CSFs) are used for the ground state.
All the generated states up to 10 eV were retained in the final close-coupling calculation.
We employed an R-matrix sphere of radius 12 bohrs and a partial-wave expansion with
continuum Gaussian-type orbitals up to [ < 4. In the following, this calculation with the
cc-pVTZ basis set and the complete active space (CAS;) described above will be referred to
Model 1.

K-matrices are obtained from the R-matrix calculations for a geometry configura-
tion of the ion specified by the normal coordinates q = {41,492, ...,q,} with n being
the number of normal modes. K(q) is transformed into scattering matrix as S(q) =
(1+1K(q))(1 —K(q))~!. Atlow collisional energies S(q) depends only weakly on en-
ergy while a sharper energy dependence is observed at certain relatively high energies,
corresponding to positions of Rydberg states attached to the excited electronic states of
the ion. The eigenphase sum is a convenient way to identify a weak or a strong energy
dependence of the scattering matrix. Figure 3 shows eigenphase sum for the equilibrium
geometry (g9 = 0.01) and displacement g; = 0.1 along each normal mode v; of both ions.
The variation of the eigenphase sums is smooth for energies below 1 eV and 0.3 eV for
HCNH™ and CNHj, respectively. Above these values, a sharp energy dependence at
certain energies (at 3.4 eV for HCNH and 0.46 eV for CNH;r , for instance) is observed
due to the presence of electronic Rydberg resonances attached to closed ionization limits.
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Figure 3. Eigenphase sum as a function of the electron scattering energy E,; for equilibrium geometry
go = 0.01 and displacements g; = 0.1 along each normal mode v; of HCNH™ (left panels) and CNH;'
(right panels). The lower panels show for each ion an enlarged view at low collisonnal energies
corresponding to the black thick rectangles. The curves are color coded according the normal mode
labels v;. The equilibrium geometry is depicted in black dashed curves for both ions. Note that the
curves of the equilibrium geometry and normal modes v3 45 of CNH; isomer are indistinguishable.

2.3. Formulas of the dissociative recombination and vibrational (de-)excitation cross sections

The following assumptions are employed in the present model : (i) the rotation of
the molecular ions is neglected, (ii) the cross-section is averaged over the autoionizing
resonances, (iii) the autoionization lifetime is assumed to be much longer than the predis-
sociation lifetime and (iv) the harmonic approximation is used to describe the vibrational
state of the core ion. For more details see Ref.[28].

Combining the above assumptions (i)-(iv) and applying the frame transformation, the
vibrational excitation (VE) and de-excitation (VDE) cross-sections are given, in terms of
expanded scattering matrix elements to the first order of the normal coordinates, as follows

0/F(Ea) = Zf;’ilpiewez ) (1)
and
0/ PE(Ey) = ;Zill’i, )
where
p =g y B : ©
vl 2 g,

186
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is a quantity that can be interpreted as the probability of excitation of the vibrational s
mode v;. Above, g;, hw; and g; (i = 1 — n) are respectively the dimensionless coordinate, 1ss
the energy and the degeneracy of the mode v; with n stands for the number of normal s
coordinates. Again g is the equilibrium geometry of the target ion. For the linear molecular 100
ion HCNH™, n = 5 with a degeneracy of g4 = 2 and g5 = 2 for bending modes 4 and 5 10
and g1_3 = 1 for the stretching modes 1, 2 and 3. In case of the CNH; isomer, n = 6 witha 12
degeneracy of g1_¢ = 1 (see Table 2). 103

In the previous equations, S, s is an element of the fixed-nuclei scattering matrix for 104
electron-ion collisions with the initial channel (Al) and the exit channel (A'l’),  being the o5
electron angular momentum and A its projections on the molecular axis. Finally, m is the 106
reduced mass of the electron-ion system and E, the incident energy of the electron. 6 in  1e7
Eq.(1) stands for the Heaviside step function. 108

In the present theoretical approach, the initial state of a given ion is its ground vi- e
brational level, so the electron can only be captured into the first excited vibrational state zo0
of each normal mode of the ion. Formulas of Egs.(1) and (2) give the VE and VDE cross 20
sections for changing one quantum in each normal mode. Based on the propensity rule, 202
(de-)excitation process changing two or more quanta is neglected in this study because =0
their contributions in the cross sections are small. 204

As for the dissociative recombination (DR) process, the cross section is obtained [28] as 208

<aDR(E )> _ Xn:P-Q(hw- —E,) )
el 2mEel = i i el)r

where the bracket stands for the temporary captures in all the accessible Rydberg states. 2o
The present model suggests that the electron scattering energy is not sufficient to excite 2o
the ion and then to leave it. The probability of excitation P; of the ion by the electron is  zoe
described by the same physics : The electron is captured in a Rydberg resonance attached 200
to the vibrational state excited by the electron. In such situation, the system electron-ion 210
will most likely dissociate (DR process), rather then autoionize (VE process of Eq.(1)). 211

Finally, to calculate the excitation probabilities P;, the derivative of the scattering 1=
matrix with respect to the normal coordinate g;, the scattering matrix is evaluated for two 21

values of g;, g; = 0.01 and q; = 0.1, keeping the other normal coordinates fixed at the 21s
equilibrium geometry, i.e. g9 = 0.01. 215
3. Results and discussions 216
3.1. Cross Sections 217

In the theoretical model described above, we assumed that the excitation probabilities  z1s
are energy-independent. Figure 4 shows the weak dependence of P; of Eq.(3) on energy. As 210
demonstrated in Figure 3 for the eigenphase sums, those quantities are constants at low 220
energies, and therefore could be used in the calculations of cross sections of Eq. (1), (2) and 221
(4) as well as for thermally averaged rate coefficients, given in the next section. 222

Table 5 presents the largest vibronic interactions in both molecules and along each 223
normal coordinate. The couplings are given in the form of partial derivative, with respect 224
to the normal coordinates, of the scattering matrix. Several observations can be made from 225
the values and form of the couplings. It is appears that the indirect DR cross section of 226
HCNH™ will be larger than that of the isomer. As excepted for linear polyatomic ions, the 227
vibronic interactions mediated by the molecular bending is responsible for the indirect 22
DR mechanism in HCNH™'. However, the present results show also that the contribution 220
from the vibronic interactions induced by stretching modes of the ion is also important, =230
as reported in Ref.[28] for HCO™ and NoH ™. Furthermore, the most interesting point is  za:
certainly the unexpected high values of the vibronic couplings in the CNH; isomer. This s
result implies a large cross section for that ion. 233
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Figure 4. VE probabilities of Eq.(3) corresponding to the normal vibrational modes of HCNH™ (the

upper panel) and CNH;' (the lower panel). The color scheme corresponds to Figure 3.

Table 4. Parameters of equations (1), (2), (3) and (4) calculated at E,; = 0.01 eV collision energy.

HCNH"  CNHj
Normal mode, v; P; P;
1 0.4877205 0.2213105
2 0.4882937  0.1519490
3 0.1729784 0.2175728
4 0,4469524 0.1332123
5 0,3781402 0.3158785
6 - 0.1075744
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Table 5. Partial derivatives with respect to the normal coordinates of the largest scattering matrix
element for HCNH ™ and CNH; molecular ions at E,; = 0.01 eV.

HCNH* CNH;
Normal mode,  Electronic states S, Electronic states S,
v IA=T)N ‘ i gy IA=T)N ‘ i g
1 po —do 0.4598 S0 — s 0.2345
2 po —do 0.4793 dés —do 0.2149
3 po — po 0.3446 s — ds 0.2963
4 drr —dm 0.3392 dé —pr 0.2308
5 dr—dmr 0.2206 prt—do 0.3322
6 - - prT — po 0.1672
i T T TTTTT T T ||||||| T T llll-'l_ll_ i T T TTTTT T T T TTTTT T T IIII-I'-II_
HCNH CNH
-12 b 2 |
10 JE 3
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Figure 5. Theoretical VE, VDE and DR cross sections of HCNH™ (left panel) and CNH; (right panel).
Values of Table 4 was employed for this plot. The color scheme corresponds to Figure 4.

The theoretical VE, VDE and DR cross sections are displayed in Figure 5 for HCNHT 234
(left panel) and CNH;r (right panel). At low energies VE and DR cross sections are feature- 23s
less and behave simply as 1/E,; following the Wigner law. For energies higher than 0.1 236
eV, the cross section drops in a stepwise manner because the scattering electron excites the 23
vibrational level of the ion by one quanta. 238
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Figure 6. Theoretical DR cross section of HCNH™ (solid black curve) obtained in this study compared
to the experimental data (red dots) from Ref.[25] and previous theoretical result (solid blue curve) of
Ref.[20]. DR cross section of CNH2+ (dashed black curve) obtained in this work is also displayed.

Figure 6 shows the theoretical cross section in comparison with the experimental 230
results by Semaniak et al. [25] and previous calculations by Douguet et al. [20]. The cross 240
section was convoluted according to Eq. (2) of Ref.[39] with a parallel electron energy of 0.1 241
meV and a transverse energy spread of 2 meV. One interesting feature for HCNH™ is the 24
double drop in its theoretical DR cross section corresponding to the two transverse normal 243
modes v4 and v5, with very different asymmetrical elongations of the hydrogen atoms (see 24
Table 2). There is a good agreement between the present result and previous theoretical 245
and experimental data. The figure demonstrates that the DR cross section in CNH; isomer 24
is also important presenting a drop at about 90 meV, which corresponds to the vibrational 24
thresholds of v4 and v normal modes. 248

3.2. Rate Coefficients 240

Thermally averaged rate coefficients are evaluated from the general expression of zs
Maxwell-Boltzmann averaging (see Eq.(7) of Ref.[40], for instance). Due to the simple 25
analytical forms of the cross sections (1), (2) and (4), thermally averaged rate coefficients 2s2
take the the following expressions 283

|2 K2 hew;
VE _ . _ !
a/ = (T) = KT 72 P; exp( ka) , (5)
[27 WP
VDE _ .
&; (T) - kam3/2 Pl/ (6)
DR . 27T hz 1 hw;
) =\ ez BR[| @

where ky, is the Boltzmann coefficient, m is the electron mass and T is the temperature. Fig- 2sa
ure 7 shows the obtained rate coefficients for VE, VDE and DR as functions of temperature. 2ss
For low temperatures, T < 500 K, the VDE and DR rate coefficients behave as 1/ VT while 256
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for the VE T—05 exp(—%). At higher temperatures, the DR rate coefficient decreases 257

faster than 1/+/T because the vibrational excitation becomes more probable. 258

107
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Figure 7. Theoretical VE, VDE and DR rate coefficents of HCNH™ (left panel) and CNH;r (right
panel). Values of Table 4 was employed for this plot. The color scheme corresponds to Figure 6.

3.3. Assessment of Uncertainties 250

The main identifiable sources of uncertainty is the scattering model used in the cal- ze0
culation. To assess the associated uncertainty, we performed a complete calculation of ze:
the VE, VDE and DR cross sections using different basis sets and orbital spaces in the =z
electron-scattering calculations. The main scattering model (Model 1) is described in Sec- 263
tion 2.2. In the second set of calculations (Model 2), the electronic basis was reduced 2ea
from cc-pVTZ to DZP. In Model 3, the complete active space (CAS) in the configuration =zes
interaction calculations was reduced with respect to Model 1 by 2 orbitals, i.e. 3a and 4a. 266

Figure 8 shows the obtained results. The difference between the DR cross section 267
produced in the three calculations is about 10% for HCNH™ and 15% for the CNH; isomer. zss
This later result implies that the DR cross section of CNH] is also important which suggests  zes
that this ion might be present in DR experiments of HCNH*[25]. 270
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Figure 8. DR cross section obtained within three different scattering models (see text) in comparison
with experiment and previous calculations (see Figure 6). Upper panel shows the obtained results for
HCNH™ (solid colored lines) while the lower panel for CNH;r (dashed colored lines). The Model
1 is described in Section 2.2. In the Model 2, the basis to represent the electronic wave functions is
reduced. In the Model 3, the orbital space in the configuration interaction calculation was reduced
with respect to that used in the Model 1. The differences between results obtained in the three models
are about 10% for HCNH™ and 15% CNH;, so that they are indistinguishable in the figure.

4. Conclusions

To summarize the results of the present study. We computed cross sections and rate
coefficients for VE, VDE and DR of HCNH" (X 1X) and its stable isomer CNH;r (1'Ay) by
electron impact using a theoretical approach that combines the normal modes approxima-
tion for the vibrational states of the target ions, the vibrational frame transformation, and
the UK R-matrix code.

The convoluted DR cross section for HCNH™ agrees pretty well with the experimental
data and a previous study. Another interesting feature is the importance of the DR cross
section of CNH; isomer which suggests that this ion could be present in the DR experiment
of HNCH . To confirm these findings, a comprehensive set of calculations was performed
to assess uncertainty of the obtained cross sections.
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Since the cross sections and thermally averaged rate coefficients have a simple analyti- 2s2
cal forms, they can readily used in the modeling of non-LTE spectra of HCNH ™, involving  ze
the CNH, isomer, in various astrophysical environments. These results demonstrate zss
that CNH; must to be taken into account in chemical models that attempt to explain the  zss
HCNHT abundance and HNC/HCC abundance ratio observed in the interstellar medium. =z

Moreover, the ab inito calculations preformed on the lowest singlet state of the Ho)CN™ 27
isomer provided an imaginary frequency for one of its normal mode which suggests that the  zss
ion is likely unstable. A study of the HCNH™ isomerization reaction path was performed  zes
by determining the intrinsic reaction coordinates (IRC). The linear structure HCNH™ was 200
found to lie lower by 3.18 eV. This proves that the HCN™ isomer is a transition state ze:
explaining probably why it has not yet been identified in interstellar space. 202

Finally, the rotational structure of the target ions and of the neutral molecules was 203
neglected in the present approach. Hence, the obtained cross sections and rate coefficients 204
should be viewed as averaged over initial rotational states and summed over final rotational 205
states corresponding to the initial and final vibrational levels (for VE and VDE) or disso- 2¢6
ciative states (for DR). Discrepancies between the computed results and the experimental 2o
measurements observed at low electron scattering energy maybe due to neglecting the 208
rotational structure in the present model. Rotationally resolved cross sections, i.e. without 200
changing the vibrational state will be the subject of a further study. 300
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