Earth’s Energy Budget, Heat Transport,
and Ice



Northward (or Meridional) Heat Transport
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Annual mean Top Of Atmosphere (TOA) radiation budget of planet
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Daily mean insolation at top of atmosphere

-peaks at poles at
summer solstice.

-Is zero at poles at
winter solstice.

- global average
~ 342 Wm-2
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Northern summer radiation budget (Jun. Jul. Aug.)

Absorbed solar
Qy(1-a):

Longwave
emitted to space, F:

The difference: drives
climate dynamics AND
heat storage
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Northern winter radiation budget (Dec. Jan. Feb.)
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Top of Atmosphere (TOA) Flux Balance
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Local TOA imbalance drives dynamical
heat flux such that the TOA imbalance is
equal to the heat flux divergence. The
imbalance is small relative to F or Qo(1-o)
in most regions, except at the poles

Hartmann, 1994
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Atmospheric General Circulation in <15 minutes

Point 1: Temperature gradient develops owing to differential
heating

Hadley Circulation

4 > *“Thermally direct” meridional cell
*Warmer air rises in the tropics
(cooling it somewhat).

*Cooler air sinks further north
(warming it somewhat)

*Cooler air moves equatorward at

surface

Eq y (north) * Heat transport is primarily via

potential energy

z (up)
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Point 2: Temperature gradient drives thermally direct cell,
which moves heat poleward



Point 3: Temperature gradients cause vertical shear of the
horizontal wind (see intro meteorology text book)
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Eq y (north)

u = westerly wind

T = temperature

Z = up in atm, ? in ocn
y = north

X = east

|lsobar slope increases with
height

|lsobar slope determines
geostrophic wind speed
*\Westerly wind speed
increases with height

@ = Westerly wind



Vertical shear of horizontal wind is baroclinically unstable
- encourages storm production, which limits the poleward
reach of the Hadley Circulation to about 30 deg latitude

Midlatitude Baroclinic Eddies (aka Storms)

*Eddies arise owing to horizontal
temperature gradient

*Eddies transport heat towards the
pole

*Eddies erode north-south
temperature gradient and hence
weaken their energy source

y (north)

Point 4: Horizontal eddies move heat poleward and
iIncidently produce a thermally indirect meridional cell known

as the Ferrel cell (see intermediate meteorology text)



Ocean Circulation in <15 min

Surface Winds (crudely)
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Ekman drift (in the NH)

‘Wind drags surface and
friction drags layers beneath

Deflected to the right by
Coriolis Force

*Results in spiraling pattern

*Net transport of water to the
right of the wind.

Cogyright 1999 John Wilay and Sons, Inc. All rghts resernved.

Nansen’s student Ekman solved this after Nansen saw icebergs moving at
right angles to the wind



Equatorial Upwelling

/Trade winds.

— Water movements

Adapted from Thurman, Harold . (1997) Introductory
Oceanography, 8/E. Prentice-Hall, Inc., New Jersey.

*Trade winds blow
surface toward the west

Ekman flow transports
water poleward in both
hemispheres

*Upwelling cold water
fills gap

Causes a meridional
circulation that moves
heat poleward, “Eulerian
mean”’



Wind variations cause gyres provided there is land
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M = vertically integrated

1 0T, mass transport
M, ~ —= — P
Sverdrup Balance y 3 By T = wind Stress
OM,  OM B = df/dy is the rate of change
— +—= =0 of Coriolis parameter with
i iy .
latitude

recall x=east, y=north

Requires Boundary Condition M, = 0 at eastern boundary

I | )
120°  -90°  -60°  -30° 0°

I | | |
30° 60" a 1206 150° 180"  -150°

http://oceanworld.tamu.edu/resources/ocng_textbook/chapter11/chapter11_01.htm



Gyres transport
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Gyres move heat and also cause meridional flow (Sverdrup Balance)




Eddies move heat 0.1° Simulation

like mini-gyres resolved (not parameterized) eddies

30

Current Speed in cm/s for randomly chosen October



Mean Meridional Circulation also moves heat
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0 - Potential Temperature
(shaded) temperature if air
sinks adiabatically to surface,
stratosphere has large 6 and
IS very stable

Y .- streamfunction (lines)
denotes circulation

Atmosphere is in thermal wind
balance, has Hadley and Ferrel
Cells, strong midlatitude grad 6
and jets, etc

Ocean has sinking in the high
latitudes and upwelling in the
tropics. Little circulation under
sea ice.
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Marshall and Plumb

. per level
. wesierlies

surface weslerlies
and eddies

northeaster o
surface trade winds Hadley
/ circulation

-

EQUATOR

/NI

Ferrel cell in mid latitude (opposite sense of Hadley circ), results from momentum
and heat budgets driven by eddies... see favorite meteorology text



Marshall and Plumb

Net radiative gain Net radiative loss

| |

heat transport by
eddies

high
latitudes

tropics  subtropics



Weaker eddies also has implications for momentum transport

tropics

middle Marshall and Plumb
latitudes

mtm

Hadley circulation

S

mtm transport by
eddies

e

[

momentum gain

where winds are easterly

W
momentum loss

where winds are westerly

Wave dispersion causes shape of eddies to be non-circular
in the horizontal such that they transport westerly momentum towards the pole, thus
requiring easterlies in the tropics



Drake, 6 and Vo
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(b)

ICE Ridge
Aqua e
No GYRE E_
anywhere .
ICE ,
Ice doesn't
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Fig 2
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Without gyres, ocean heat transport at 60 N/S is
Inadequate to prevent ice

Oceanic Heat Transport
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But atmospheric heat transport at 60 N/S over compensates

Atmospheric Heat Transport
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Ocean Heat Transport varies by X2 but total varies little

(a) Total Heat Transport
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The rest of the paper is about why the total heat
transport is slightly larger when the poles are icy.

Never says why circulation details affect ice!!!

4 = 2R cos9(S(8)a(6) — I(6)
total heat
transport — Absorbed ) Outgoing
change with solar longwave
latitude

Circulations are wildly different but analysis is
only in terms of top of atmosphere energy balance!



2-Box model of one hemisphere

Fluxes are divided by
total incoming solar

SE T lg Sp lp
‘ s = absorbed solar
4 \ 4
f_) | = outgoing longwave
radiation
(IE (ZP

f = transport at 30 deg
x=0.0 A= 05 x=1.0 3 = co-albedo = 1-albedo
($=0)  ($=30°)  (9=90°) T
X=sin ¢

Hemispheric energy balance requires the
mean absorbed solar must equal mean OLR

sa=1i (barmeansboxavg)



e pi Sp| pin As =353

b S

AR o

a, a, Aa =ap — ag
x=0.0 x=05 x=10 o
@=09  ($=30  (p=90° Al =1ip —ig.

Hemispheric energy balance also requires

Ax

T — (Asa + sAa + AsAa, — Az) 5



After some algebra recognizing strong cancelation between solar

absorption and outgoing longwave ...

Two-box model

Coupled model

—Asa | —sAa | —j;AsAa | +Ai | Sum | Hr at 30° (PW) | Hy at 30° (PW)
Agqua NH | 0.240 | 0.086 | -0.016 |-0.021 | 0.289 6.30 6.25
Ridge NH | 0.249 | 0.023 | -0.004 | 0.002 | 0.270 5.88 5.81
Drake NH | 0.250 | 0.024 | -0.004 | 0.007 | 0.277 6.03 5.86
Drake SH | 0.239 | 0.087 | -0.016 |-0.026 | 0.285 6.21 6.11

Biggest term is from differential heating by sun

But As and s are same for all cases - hence H; differences are due

primarily to co-albedo mean and pole-to-equator difference




