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Introducing key theoretical and data analysis tools in computational
physics via Earth’s temperature and climate
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This paper presents two thematically linked activities focused on temperature, climate, and climate

change that can be used as engaging ways to introduce students to computational techniques. The

first activity makes use of a non-equilibrium Earth undergoing climate change to introduce students

to numerical solutions to differential equations via an ordinary first-order differential equation.

This activity also introduces the concept of a toy model, and the important ideas of simulation

validation and convergence. The second activity gives students several decades of local

temperature data sampled hourly, introducing them to model fitting messy, real-world data, while

also allowing them to see the effect of climate change. The amount of scaffolding for each activity

is flexible, allowing instructors to adapt these activities to classes at advanced, intermediate, and

even introductory levels. # 2025 Published under an exclusive license by American Association of Physics Teachers.

https://doi.org/10.1119/5.0224293

I. INTRODUCTION

Teaching computation prepares our undergraduate students
not only for graduate school but also for private sector careers,
many of which will be in fields related to computation, such as
programming and data science.1,2 A perennial question facing
teachers is how much to make our students do “by hand.” In
computation, we have long made extensive use of programs
written by others. This borrowing is efficient, but can lead to
black boxes, where users do not know how the program actu-
ally works. The rise of machine learning, including artificial
intelligence, has dramatically increased this black-box effect.

As physics teachers, we care about results, but we also care
about derivations, because we care about understanding. We
provide and ask for derivations in our analytical courses, and in
traditional computation, we ask our students to write common
algorithms prior to letting them use existing packages. There is
somewhat less standardization when it comes to introducing
students to data analysis, but it can be useful to have a broadly
applicable and standardized approach here as well. Data and
models about local temperature and climate change are well
suited to this task, because they are topics about which students
already have considerable intuition, while still providing
enough complexity to thoroughly engage students.

The pair of activities I describe in the following, one in
theory and one in data analysis, are linked only thematically
and can be used separately, including with students at a wide
variety of levels. My own target audience has been a broad
group of undergraduate students who have all completed
first-year physics but have little else in common. Many are
physics majors, but others are majoring in math, chemistry,
engineering, or other fields. About half of them have some
prior programming experience, but the remaining half do
not, and thus as a prerequisite to these activities, I spend a
few weeks introducing them to Python. Any very high-level
language suitable for scientific programming can be used,
but Python stands out as one that is widely used in both sci-
entific and corporate environments.

Adaptations can be made for students at different levels,
as I discuss in Sec. IV. These activities can be used together

or separately. Jupyter Notebooks implementing these activi-
ties in Python, including full solutions, are provided as sup-
plementary material. These notebooks can be run locally on
computers with Python and Jupyter installed (such as with
the Anaconda distribution), or on a cloud-based service such
as Google Colab.

II. TOY MODELS, AND DIFFERENTIAL

EQUATIONS IN NON-EQUILIBRIUM SITUATIONS

Physics is stated in differential equations. While some sit-
uations are exactly solvable, other situations are not, particu-
larly as students progress to more advanced and constrained
versions of physical laws, such as Schr€odinger’s equation or
Einstein’s equations. Thus, we often resort to numerical
solutions.

However, the equations of physics are almost always sec-
ond-order equations, from the examples above to Maxwell’s
equations, Lagrange’s equations, and even Newton’s second
law. Computational approaches to second-order equations
can require learning how to simultaneously solve two first-
order equations and then conceptualizing one second-order
equation as two first-order equations.3 While this is an
important skill, it is a less-than-ideal instructional starting
point.

However, there are situations that give rise to first-order
equations, including temperature change resulting from an
imbalance of energy flow. A salient example is climate
change.

This exercise also reviews physics concepts and introdu-
ces the idea of a toy model. Importantly, for numerical
simulations, it also introduces validation of programs by
checking against known results, and the concept of a con-
verged simulation.

I start with the standard equilibrium calculation of a plan-
et’s temperature. Such calculations are commonly covered
when training climate scientists4,5 and astronomers,6 but do
not actually require any specialized knowledge. First-year
physics understanding of radiative heat transfer, based on the
Stefan–Boltzmann equation, is all that is needed.7,8
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A. Equilibrium model

Students begin by deriving the solar constant (the flux
from the Sun at Earth’s orbit), f� ¼ L�=ð4pd2

ESÞ, in terms of
the provided constants of the Sun’s luminosity (power out-
put; L�), and the Earth–Sun distance (dES). Equating the
power received from the Sun with the radiated power out
results in

pr2
Ef�Reff

in ¼ rð4pr2
EÞT4Reff

out: (1)

The fact that there is a 4 on the righthand side of that equa-
tion is usually obvious, since the entire area of the Earth
radiates, but the absence of the 4 on the lefthand side is
often tricky for students. Some students instinctively use a
4 there as well, for the area of a sphere, and need to be
reminded that the Sun does not shine everywhere on Earth
at the same time. Others use a factor of 2, accounting for
there being day and night sides of the Earth, but this
assumes the Sun shines from directly overhead all day.
Those with more physics and math background may start
integrating the incoming radiation dotted with d~A over the
surface of a half sphere, which is fine, but they should be
subtly encouraged to consider the far easier and more intui-
tive approach of asking how big a target Earth makes for
the Sun’s light.

I do discuss the dependence on emissivity (�) and trans-
mission coefficient (here denoted by R, since T is taken by
temperature), but since these factors only occur multiplied
together in this simple model, I instruct the students to com-
bine these degenerate variables into a single effective trans-
mission coefficient Reff . As a pedagogical matter, it is worth
emphasizing that the emissivities at visible wavelengths
(which is most of the incoming radiation) and in the IR
(most of the outgoing radiation) are different, as are the
atmospheric transmission coefficients. More advanced stu-
dents can appreciate that we are taking averages over more
complicated, frequency-dependent transmission coeffi-
cients,8,9 just as the Stefan–Boltzmann law averages black-
body radiation over all frequencies.

Solving Eq. (1) results in the equilibrium temperature,

Teq ¼
f�Reff

in

4rReff
out

 !1=4

: (2)

The first program the students write applies this analytical
model to calculate equilibrium temperature for given trans-
mission coefficients. This allows them to confirm that the
transmission coefficients I provide do give a realistic global
average temperature. It also lets them play with a variety of
other scenarios, including the (low!) temperature of an Earth
with no atmosphere, or the (also low) temperature of a
“snowball Earth” that’s quite reflective due to very large-
scale glaciation, such as the Marinoan glaciation period
around 650 million years ago.10

When the students write the non-equilibrium program,
which does not incorporate Eq. (2), the first test they run
with the program is to verify that it returns a stable tempera-
ture if they start with the correct equilibrium temperature for
the given transmission coefficients. This introduces the con-
cept of validating code by checking the results in known spe-
cial cases. (Questions and solutions are shown in the climate
model supplementary file.)

B. Non-equilibrium model

The non-equilibrium situation is introduced as a toy model
for climate change. I have students employ a step-function
decrease of Reff

out at five years into the simulation, a very sim-
ple model of increased outward opacity due to greenhouse
gasses being introduced to the atmosphere. This abrupt
change in transmission may seem unphysical, and I do pri-
marily choose it for its simplicity, but note that sudden forc-
ing can result from the climate system leaving quasi-stable
equilibrium.4 The purpose of having this change five years
into the simulation is to force another check that the non-
equilibrium code can reproduce the initial equilibrium
situation.

Students at this level are often unfamiliar with the term
“toy model,” so it’s worth emphasizing the utility of a model
that captures some effect of interest even if it is not intended
to realistically match data to any degree of accuracy. This is
a single-zone model, using one temperature to characterize
the Earth, and thus assumes perfect heat transfer around the
globe. While clearly not the planet we live on, the toy model
gives an example of how temperature increases can be
“locked in” even if all new emissions of greenhouse gasses
immediately cease.11

Reminding the students that heat capacity C ¼ Q=DT, and
that Q ¼ PnetDt, they come to the relationship

DT ¼ 1

C
PnetDt

) Tiþ1 ¼ Ti þ
Pnet

C
Dt; (3)

where Ti ¼ TðtiÞ, the temperature in the ith time step. Pnet is
temperature dependent, as it is calculated from the difference
between the energy received from the Sun (the lefthand side
of Eq. (1)) and the energy radiated out by the Earth (the
righthand side of Eq. (1)). The two sides of that equation are
no longer equal due to the system no longer being in
equilibrium.

It is worth explicitly pointing out to the students that Eq.
(3) is the finite version of the differential equation,

dT

dt
¼ Pnet

C
: (4)

The precise values of the transmission coefficients and
heat capacity do not matter in this toy model, but make sure
whatever combination you provide results in a correct initial
equilibrium temperature, and a long-term temperature rise
that is significant but not absurd. Instructors who have more
time can introduce physically motivated values for these
parameters. The heat capacity calculation can be motivated
by taking the volume of water in the Earth’s oceans,12 about
1:3� 1018 m3, and calculating its heat capacity of about
5:4� 1024 J/(kg �C). The value I use in the code in my sup-
plementary files is an order of magnitude smaller than this,
and a more involved discussion could delve into the approxi-
mations we are making in this single-zone model (which
assumes perfect mixing, something that does not happen in
our oceans).

Motivating the transmission coefficients would be a more
significant digression, appropriate only for an advanced
class.9,13 This could be worthwhile if the class has already
covered numerical integration, in which case the students
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could integrate over an empirical atmospheric transmission
function. You will need full coverage from the near UV
through the thermal IR. Since no single instrument can
record these data, the best approach might be an empirically
based radiative transfer model, such as MODTRAN6,14 or
other codes making use of the absorption database
HITRAN.15 Also note that you must weight the actual trans-
mission function by the emission spectrum to calculate a sin-
gle effective number.

I have the students calculate how long it takes to reach the
new equilibrium, to within 0.1 K, and they see a temperature
rise due to greenhouse gas emissions from decades earlier
(Fig. 1). I also have the students vary their time step, Dt, and
check their results. At this early stage in their computational
careers, they are tempted to choose time steps that seem like
round numbers to them, not always distinguishing the
large difference that can exist between Dt ¼ 1 (second) and
Dt ¼ 1 (year).

The meaning of “convergence” is that the model produces
the solution we care about to the precision we need. Remind
students that when solving a differential equation, the solu-
tion is a function, not a number, and in our case, we are look-
ing for the temperature function TðtÞ. This definition of
convergence will likely be novel to the students, who will be
more familiar with the idea of convergence, meaning that a
function approaches a specific number for limiting values of
the independent variable.16

Since we do not know the true solution, we can check for
convergence by decreasing the time step Dt. If one sees a sig-
nificant change in TðtÞ when decreasing Dt, that means the
simulation is not converged. Using smaller time steps makes
the simulation more accurate (until numerical noise starts to
dominate), but decreasing the time step means increasing the
time it takes to run the simulation. Ideally, then, we should
use time steps that are not much smaller than the level
needed for convergence.

In most of our classes, we try to solve things exactly, and
it can be a challenge for students to let go of this mindset
and aim for results that are “good enough.” It is also novel
for the students to check their results not by comparing to
the “right” answer, but rather by comparing two models
when we do not know in advance that either is right (to
within our tolerance).

Students find that this is a relatively gentle introduction to
numerical differential equation solution, given the simplicity
of the first-order differential equation and the sufficiency of
the Euler approximation for solving the equation. The Euler
approach, as implemented in Eq. (3), is only first-order accu-
rate in the time step, and it is usually too inefficient to use in
practice, but here it works fine. This is beneficial, as the
Euler approach is straightforward to relate to the differential
equation itself, Eq. (4), although this is not to be expected to
be immediately obvious to students. From this basis in
numerical approaches, instructors can lead into a discussion
of higher-order Runge–Kutta techniques,3 as well as techni-
ques to solve second-order ordinary and partial differential
equations.

To tie this back to physics, it is worth closing by asking
the students to explain why larger time steps always lead to
faster temperature rises.

III. DATA ANALYSIS AND MODEL FITTING

Too often the data we initially give students to analyze is
simplified, sanitized, or even mock data. There is use to this,
to initially illustrate some points with no added complica-
tion, but I think we need to quickly move past this into work-
ing with messy data. Students often get to encounter such
data in research projects, but it is useful to prepare students
for this research experience with an exercise that is standard-
ized, but still has data that are messy and can also be made
unique for each campus.

To this end, I chose the temperature datasets that National
Oceanic and Atmospheric Administration (NOAA) provides
through Climate Data Online17 (CDO). Hourly temperature
readings are available for weather stations across the United
States, which provides data for more complex model fitting.
In particular, there are diurnal variations in temperature and
annual variations in temperature, and on top of that there
might be the subtle signal of long-term rising temperatures
from climate change. In addition, the data are imperfect and
may not be formatted as we would like, providing students
with an example of the complications of real-world data.

First show students how to read in the data and turn it into
two arrays of time (t) and temperature (T), as a physicist
would expect. For time, I use the common astronomical stan-
dard of the modified Julian date (MJD), which is the
floating-point number of days since midnight on July 17,
1858. Other formats, such as seconds since the Unix epoch,
can work, although the CDO data can extend back well
before 1970 for many stations. Note that the datasets pro-
vided through CDO are good, but imperfect. For example, in
the dataset I have provided as an example, the year 1996 is
entirely missing. Perhaps this weather station had a period of
mourning after the end of the Calvin and Hobbes comic
strip.18

In the supplementary material, I provide the questions I
pose and full solutions in the temperature and climate
data analysis notebook, as well as an example data file for
one particular weather station. I start this data file in 1973.

Fig. 1. Global temperature toy model with a one-time very large decrease in

outward atmospheric transmission at five years into the simulation leading

to a long period out of equilibrium. Time steps are varied to check conver-

gence. The models with Dt ¼ 0:1 year (solid blue line) and 0.001 year

(dashed orange line) appear visually identical on this scale, although the for-

mer reaches within 0.1 K of the new equilibrium after 43.1 years, while the

latter takes 43.308 years. Is being within 0.5% good enough? Depends on

one’s goals. The 2.5-year time step (dot–dash green line) is not converged,

since its TðtÞ differs noticeably from that of the smaller time steps, and it

takes also 40 years to reach equilibrium. Note that time steps that do not

divide evenly into 5 years will not change the transmission coefficient at the

right time, leading to a different kind of discrepancy.
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While this location has data back to the 1940s, it is increas-
ingly sparse, and the weather station actually changed loca-
tion during this period. There are nearly half a million data
points, but I chose a plain text format to make it easily
human readable. More advanced classes can introduce more
efficient file formats.

A. Modeling periodicity

In preparation for fitting a model to the data, I introduce
the students to scipy.curve_fit(). Prior to this, the stu-
dents have been introduced to least-squares fitting, and
understand that in this context, linear means linear in the fit
parameters, not the independent variable. (They have also
seen scipy.stats.linregress() for fitting models
that are linear in the independent variable.) We discuss what
might be a good first approximation for a dataset with double
periodicity, and then they try to fit the model,

TðtÞ ¼ A1 sinðx1tþ /1Þ þ A2 sinðx2tþ /2Þ þ C: (5)

In fact, they are apt to omit the constant C on their first
attempt, focused as they are on the periodicity. However, we
spend much of the exercise plotting our data and our fits, as I
emphasize making sure the results are sensible. They quickly
see that omitting C does not yield good results, and then con-
nect their implicit assumption that C ¼ 0 to the physical
realization that the global average temperature is not 0 �C.

However, even with the full seven free parameters, stu-
dents get extremely disappointing results from curve fitting
with Eq. (5). Their plots show extremely poor matches to the
data, as seen in the dot–dash line of Fig. 2.

At this point, I draw their attention back to two exercises I
had them do earlier. The first was using brute-force calcula-
tion to find the least-squares best fit to a collection of lab
measurements of the local acceleration due to gravity (g). To
accomplish this, they generated an array of trial g values and
calculated the v2 for each one. They then found the lowest v2

and selected the g value associated with it as their best

estimate. This may seem like an absurd approach, as the
optimal result is just the arithmetic mean of the data, but this
exercise has several benefits. First, it allowed them to easily
interpret v2 minimization visually, as you can make a 2D
plot of v2 vs. trial g and see the clear minimum. Such plots
become difficult and then impossible as the number of
parameters increases. Second, they saw that the least-squares
approach, done properly, produces an expected result that
they can find independently. Third, they saw that it does not
quite produce the expected result, because they only had a
finite set of trial g values. They can increase the accuracy by
using more trial g values, but they saw the tradeoff between
accuracy and the cost of more memory and higher runtime.

The second exercise is to use brute-force calculation to do
a linear fit to some data, calculating v2 over a 2D parameter
space of slope and intercept. They chose 1-D arrays of slope
values and of intercept values and generated a 2D array of
paired slopes and intercepts. They calculated the v2 for each
pair of slopes and intercepts, and then, as with the first prob-
lem, they found the minimum v2 and selected the associated
slope and intercept as their best fit. Again this method has no
practical application, given that the linear problem can be
exactly solved with matrix inversion, but it showed them the
computational side of problems that cannot be solved
exactly. The slopes and intercepts they found were good, but
not quite right, because the sampling that they could do was
somewhat course-grained in a 2D space. Here, the cost of
increasing accuracy is much larger than in the first problem
of finding g, because the cost of the calculation goes like N2

rather than like N, where N is the number of points in the 1D
arrays. They could still plot v2 as a function of the model
parameters, and they saw that while some regions were eas-
ily ruled out, there was a valley of fairly similar v2 values.
While the slope and intercept were not degenerate, there was
an approximate degeneracy. With an upward sloping line, a
decrease in intercept can approximately be compensated for
by an increase in slope. Thus, this exercise showed them the
increased difficulty of brute-force minimization with
increased dimensionality and also showed that minimization
can be tricky when multiple parameters are involved and can
change in correlated ways.

This background, while not necessary, equips the students
to understand what had gone wrong with scipy.curve_-
fit(). They have 105–106 data points and a seven-
dimensional parameter space. Brute-force v2 minimization is
essentially impossible, certainly at a fine enough level to get
adequately precise results. We discuss the concept of a local
minimum, and how easy it is for an algorithm to get stranded
far from the optimal point in parameter space.

I have them read the help page for scipy.curve_fit(),
and they notice that you can specify initial guesses for
parameters. After some thought, they realize they can give
extremely good initial guesses for x1 and x2, and reasonable
guesses for A1, A2, and C. It is possible to guess the phases as
well, but it is not necessary; with the information from the
periods, scipy.curve_fit() is able to find a good fit.
Students will discover that the routine does not obey physics
conventions. For example, it often returns negative ampli-
tudes, which students may only recently have had drilled out
of them in first-year physics.

The model plot with the true best-fit parameters still can
look wrong to students. On annual scales, the amplitude
looks too small, for example, as seen with the model fit in
Fig. 2. Plots that zoom in on few-day regions can help

Fig. 2. A five-year segment of the temperature data with the model fit over-

plotted. Students can see from this plot that the phase is correct for the

annual variation component of their model. The dot–dash line that is nearly

constant shows the model fit when no initial guesses are given for the param-

eters, showing that the algorithm got stuck very far from the global mini-

mum and produced a terrible fit. Rapid variation on the timescale of days

causes the model to appear solid and very wide in temperature, although stu-

dents will often think it is not wide enough because they can see the data

well above and below. To resolve this, and check the fit on day timescales, it

is necessary to plot shorter times as in Figs. 3 and 4.
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explain what is happening. Some time periods show very lit-
tle diurnal variation (Fig. 3), while others show much more
(Fig. 4).

I have students use their temperature model to predict the
temperature for our last class meeting. This is not entirely
trivial, as they have to make sure their model (in UTC) is
correctly shifted to match our time zone, and many will shift
the wrong direction. However, this is a fun test, the like of
which students may not have experienced in their classes
before, where they are predicting something that is genuinely
unknown but can be tested easily and viscerally quickly
thereafter. The first time my students did this, their predic-
tion was closer to reality than what the National Weather
Service predicted 24 h in advance. This was obviously luck,
given that our model knows nothing about current weather
conditions, but it is a good example for students about how
hard prediction is with complicated systems—even advanced
computer models taking into account recent data can be inac-
curate for complicated systems with many physical scales.

While I use an explicit two-sine model, I do mention
Fourier analysis to my students and stress the utility of such
an approach for processes where they do not have good
guesses at the periods involved. The power spectrum thus

obtained, shown in Fig. 5, confirms the two periods that we
knew a priori were present, gives some information on their
relative strengths, and confirms that no other periods of any
significance occur in the data. My class has no physics or
math prerequisites that would cover Fourier analysis, so, for
me, this is just a demonstration, but other instructors could
modify this based on their students’ backgrounds.

B. Detecting warming

When students plot the residuals after fitting this model to
it, they look like noise. However, I introduce the students to
the idea of smoothing the data, and they write a running-
average smoothing routine that, when averaging over enough
data points, shows that there is some residual linear structure
to the data. They can perform a linear fit to the residuals and
find a significant increase in temperature over the five deca-
des our data cover (Fig. 6). However, I also have them go
back and perform a fit to the raw data with an updated ver-
sion of Eq. (5), adding on a linear portion,

Fig. 3. Best-fit model overplotted on a 15-day segment of data, showing that

sometimes there is very little day–night temperature variation and the model

overpredicts it, since the model describes average variation.

Fig. 4. The model can also underpredict the diurnal temperature variation,

as seen in this 20-day segment of data. While this is not surprising, given

that the model combines only two pure frequency modes, one for annual var-

iation and one for diurnal variation, it still often surprises students new to

data analysis. Plots like this are also necessary for students to check that the

diurnal phase in their fit is correct.

Fig. 5. The Fourier power spectrum of the temperature data. Periods are

given by N=k, where N is the number of data points (403 200 in my example

dataset). The stronger peak, at k ¼ 46 in this plot, thus, has a period of

365.2 days, while the weaker peak, at k ¼ 16 800, has a period of 24.00 h.

Fig. 6. The lightweight blue line shows the raw residuals after model fitting

the data with Eq. (5). When smoothing the residuals with a 4001-h running

average (about five and a half months), shown in the heavy orange line,

some residual structure is visible in a slow increase in temperature. A linear

fit to the residuals, shown in the straight heavy green line tracing across the

residuals, shows a rise of 1.1 �C over the time period of these data, from

1973 to 2018. Note that 1996 is missing from this dataset.
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TðtÞ ¼ A1 sinðx1tþ /1Þ þ A2 sinðx2tþ /2Þ þ atþ C:

(6)

The slope they get seems small until they appreciate the units.
With the weather station I use, we find a ¼ ð6:8160:14Þ
� 10�5 � C/day in the fit to the residuals, but this leads to a
1.1 �C rise from 1973 through 2018. (When directly fitting the
original data, we find a slightly different number, but it is con-
sistent: a ¼ ð6:7460:14Þ � 10�5 �C/day.)

I stress to the students that a single temperature station is
not enough to establish a global trend like climate change,
and that satellite observations are crucial for whole-Earth
temperature analysis. Nonetheless, it is nice that in this sam-
ple dataset, the rise is nearly exactly equal to the global
mean temperature rise over this period.

IV. CONCLUSION

These activities are best completed as a combination of in-
class work and homework, but the exact proportion of each
is flexible and can be adapted to the circumstances of partic-
ular courses.

The sample code provided has a specific amount of scaf-
folding that is appropriate for students who have completed
first-year physics but not necessarily anything beyond that
and have received a brief introduction to programming, plot-
ting, and statistics (perhaps in the current class, or perhaps
earlier). However, the amount of scaffolding is very flexible.
Remove some of the supports, and the problems become
more challenging—indeed, the data analysis one would be
appropriate to challenge graduate students if it had very little
scaffolding.

Scaffolding can also be increased to allow use with lower-
level students. For example, an instructor could use the tem-
perature residuals after fitting out annual and diurnal varia-
tion to discuss climate change with a class that has only seen
linear regression. When asking students to write a function,
an instructor who wants to provide an intermediate level of
scaffolding can provide the docstring, specifying the input
and output, and allow the students to create the requisite
code.

The activities discussed here are also ripe targets for
extending into further projects. The simplest extension of the
climate model is to assume that the transmission coefficient
changes slowly over time, to mimic more realistic increases
of greenhouse gasses in the atmosphere. The effective trans-
mission in (which includes the Earth’s albedo) could be
changed as a function of temperature, for example modeling
the transition of sea ice to open sea with its lower albedo.
Implementing models with multiple zones to the Earth, with
different temperatures and albedos, would be an interesting
but more challenging extension. Of course there are many
other extensions possible along the road to a professional cli-
mate model, such as taking into account some of the effects
of convection, and the atmosphere’s nonlinear and
wavelength-dependent opacity response to additional green-
house gasses,13 accounting for feedback,7 creating a 1D
atmospheric model,9 and so on.5

The temperature data have many extensions. For example,
in my class, students are introduced to confidence intervals.
Thus, I have the students calculate 95% confidence intervals
on the average temperature at a specific day and time using
both Gaussian statistics and a nonparametric bootstrap.
(Daylight saving time can be nontrivial here, as some dates

have been on standard time some years and daylight saving
time other years.) They can also find normal temperature
ranges that could be used in calculations of expected heating
and cooling loads for buildings in the area. It would also be
interesting to use data from many different weather stations
to check for consistency on climate change, or compare the
temperature stability of various regions.

The Fourier analysis, presented to my students just to let
them know that such approaches exist, would form the
beginning of the analysis for students familiar with such
approaches. Do be careful here. Discrete Fourier transform
algorithms tend to assume uniformly sampled data, and real
weather station data are nearly but not quite uniform. In the
example data I provide, 99.923% of the data are separated by
1 h, but you need 100%. I use spline interpolation, which my
students have briefly seen before, to regularize my data.

Scientific data analysis is making increased use of machine
learning, including AI, which presents opportunities but also
pitfalls. Machine learning approaches create their own algo-
rithms or statistical weights that were not coded by any person,
replacing boxes that were black to most users (like scipy.-
curve_fit()) with boxes fairly black to all users. These
tools are powerful, and necessary to make cutting-edge pro-
gress in science, but, as educators, we must work to lift the veil
and give students at least a glimpse of what is going on behind
the scenes. We must also make sure that students think criti-
cally about the results they get, from any routine or model, and
build the skills to assess whether or not things make sense.
This has become an issue of great importance in the era of gen-
erative AI, where probabilistic output means you can no longer
say an algorithm is clearly correct or incorrect, but rather each
output must be assessed independently.

Temperature data are well suited to introducing both theo-
retical techniques and data analysis because of its familiarity
to the students. This reduces the cognitive load when it
comes to the data and allows them to focus on the novel
aspects of numerical simulation and data analysis.

SUPPLEMENTARY MATERIAL

See the supplementary material online for a text data file
containing temperature information for one weather station
from 1973 to 2018. Two Jupyter Notebooks of text and
Python code are also included. The first describes the climate
model of Sec. II. The second goes through the data analysis
and model fitting of Sec. III.
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