

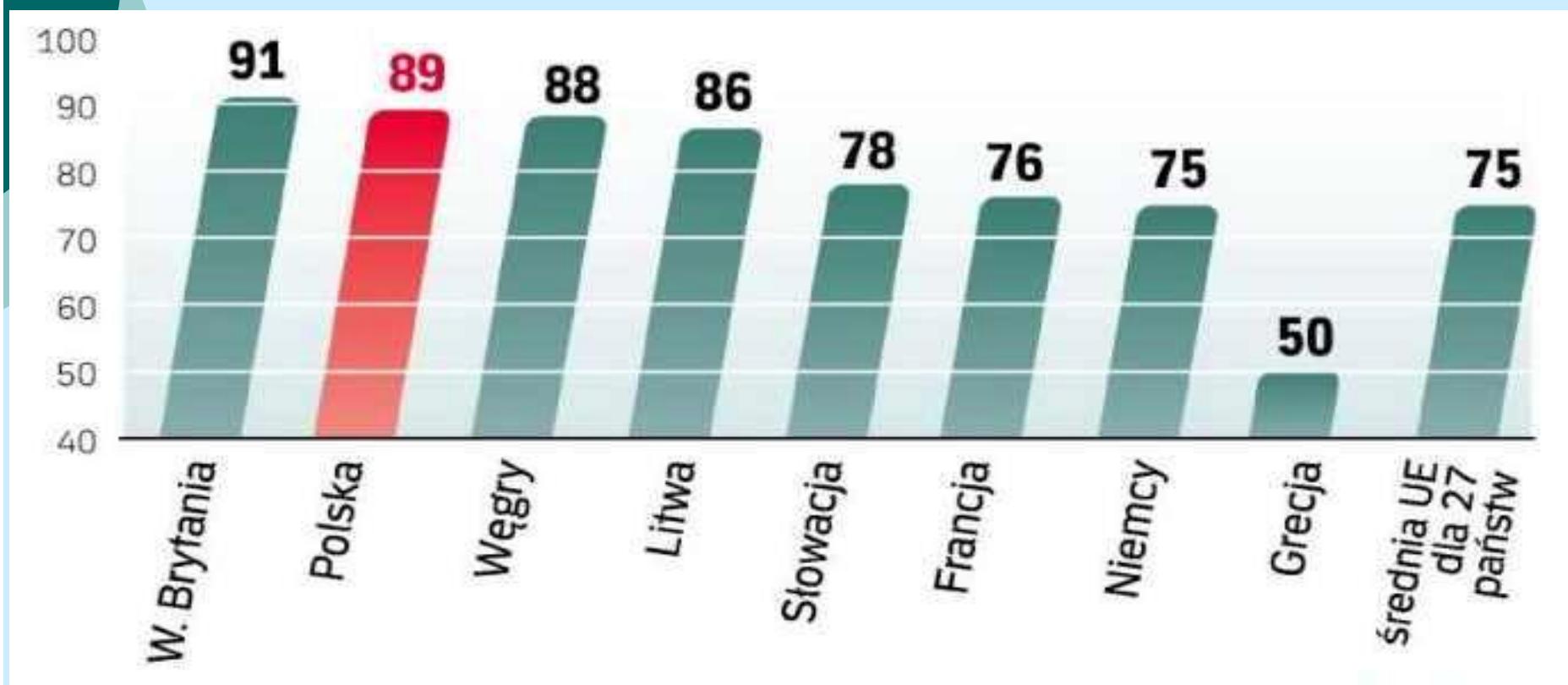
Innovative methods of didactics

Lecture 4 Neo-realism

Grzegorz Karwasz
Didactics of Physics Division UMK, Toruń, Head

a/a 2020/2021

Motivation


- Hardly, (young) people can survive a day without a cell-phone
- Internet, for the first time in human history made the information pan-available
- But human perception is not only visual and/or intellectual
- It is also manipulative: combining seeing, thinking and manoeuvring
- Try to give a simple ball to a child that plays only with cell-phone: he/ she will get simply crazy of happiness
- This is the idea behind the *neo-realism*
- In times of the virtual reality – bring real, touchable objects

Plan: four simple implementations

- Physics and Toys: small is great! (Słupsk, Warsaw, 1998)
- Teaching with no space: „Going downhill” - a didactical tunnel UMK 2007
- Itinerating exhibition „Fiat Lux! – playing with light (2008-2012) 20 issues
- Interactive lectures for children/ students/ PhDs

Children in age 6-17 using internet (2009)

A. Niewińska: *Polska sieć groźna dla dzieci.*
„Rzeczpospolita” 8.02.2010

Hyper-inflation of information

$$\vec{F} = 0$$

to całkowity pęd ciała (układu ciał) nie zmienia się:

$$\begin{aligned}\Delta \vec{p} &= 0 \\ \vec{p} &= \text{const}\end{aligned}$$

Powyższe zdanie stanowi treść [zasady zachowania pędu](#). Zasada zachowania pędu jest konsekwencją symetrii translacji w przestrzeni ([twierdzenie Noether](#))

$$\vec{x} \rightarrow \vec{x}' = \vec{x} + \vec{a}.$$

Jeżeli [energia potencjalna](#) jest niezmier

$$U(\vec{x}) = U(\vec{x}') = U($$

$$\mathbf{p} = m\mathbf{v}$$

Ma on taki sam kierunek i zwrot, co wektor prędkości danego ciała, ale jego wartość obliczamy mnożąc wartość prędkości przez liczbę – wartość masy danego ciała.

Widac, że wzór na energię kinetyczną możemy też przedstawić w postaci:

$$E_k = p^2/2m (= \frac{1}{2} m^2 v^2 /m)$$

W mechanice kwantowej nierelatywistycznej (poruszającej się z małą prędkością w porównaniu z c) cząstka swobodna o określonym pędzie $p = \hbar k$ i określonej energii $E = E_k = \hbar\omega$, opisywana jest funkcją falową: $\exp i(kx - \omega t)$, spełniającą [równanie Schrödingera zależne od czasu](#) (dla uproszczenia w jednym wymiarze):

$$-\hbar^2/2m (\partial^2\Psi/ \partial x^2) = i \hbar \partial\Psi/ \partial t$$

Virtual worlds ↔ real worlds

(Rosmini Liceum from Trento in Toruń)

Virtual worlds ↔ real worlds

(Rosmini Liceum from Trento in Toruń)

Virtual worlds ↔ real worlds

(Rosmini Liceum from Trento in Toruń)

Looking onto stars during „full” day, Piwnice

Physics and Toys: small is beautiful

- Vittorio Zanetti (Trento University, Italy, 1992)
- GK (and co-workers) Pomeranian Academy, Słupsk 1998

WIEDZA I ŻYCIE
ŚWIAT NAUKI

14,000 visitors
in two weeks

ZABAWKI I FIZYKA

Warszawa, 19-27 IX 1998
Słupsk, 5-10 X 1998

44 „portable” objects in physics, astronomy, chemistry

NIEBO I CZAS

1. Nieboskłon w parasolce
2. Niebo na piłce
3. Gwiazdy w runze
4. Układ Słoneczny
5. Przenośny zegar słoneczny
6. Zegarek pasterza
7. Zegar w obręczy
8. Zegar w pudelku
9. Klepsydra z piaskiem
10. Klepsydra na dwie cieczki
11. Zegar na metalowej kuli
12. Ultradźwiękowy miernik odległości
13. Kieszonkowy surfing
14. Lampa kalejdoskop
15. Wařinka-wstańka
16. Miś ekwilibrysta
17. Cylindra na równi
18. Dziewiątka
19. Wahadło chaotyczne
20. Potamane wahadła
21. Harmonogram
22. Piłka samoprzylepna
23. Dwie piłki w spadku
24. Wahadło Newtona
25. Pracyciovi dzieci
26. Piłka i suszarka
27. Wahadło Maxwella
28. Yo-yo
29. Pięta śmierci
30. Najkrótszy czas
31. Kolorowe bąki
32. Piłany bąk
33. Uparte čortenko
34. Zyro-kompas
35. Lejek grawitacyjny
36. Termometr Galileusza
37. Ciepło ręku
38. Wieczne spragniony ptak
39. Kryształy i skaty
40. Baniki mydlane
41. Kwiatowy zegar
42. Półprzepuszczalne lustra
43. Spojrzenie w nieskończoność
44. Fatamorgana
45. Mylny Crooka
46. Ognisko fotowoltaiczne
47. Rozszczepienie światła
48. Półprzepuszczalne lustra
49. Okulary dla pesymistów
50. Składanie barw
51. Kolorowe cienie
52. Lampa z włókien optycznych
53. Wiązka włókien
54. Świastówód
55. Okulary z stetoskopem

MECHANIKA

TERMODYNAMIKI I CHEMIA

ELEKTROMAGNETYZM

56. Spręyna na schodach
Tadziwa spręyna sama kroczy po schodach

57. Fale w spręzynie
Jak wędruje fala?

58. Katarinka kieszonkowa
Metalowy grzebień muzycznym instrumentem

59. Dzwon ruroowy
Zawieszone sztabki grają jak cymbaly

Wystawa „Fizyka i zabawki” jest organizowana w Polsce po raz pierwszy. Kolekcja eksponatów zgromadzonych przez prof. V. Zanettiego z Uniwersytetu w Trydencie była prezentowana zarówno we Włoszech, jak i w innych krajach, ciesząc się zawsze ogromną popularnością. Przedstawione „zabawki” są często w pracowniach szkolnych, można je też kupić w sklepach z pamiątkami.

Wystawa w Warszawie odbywa się pod patronatem „Wiedzy i Życia” oraz „Świata Nauki” w ramach II Festiwalu Nauki. Do Polski trafiła dzięki staraniom dr. Grzegorza Kawasza z Wyższej Szkoły Pedagogicznej w Słupsku, gdzie również będzie dostępna w dniach 5-10 października br., w Ratuszu Miejskim, w godz. 9-17.

Współorganizatorami wystawy w Warszawie są: Uniwersytet Warszawski, Festiwal Nauki, Wydział Fizyki UW oraz WSP w Słupsku, a jej sponsorem wydawnictwo „Prośzynski i S-ka”.

Wystawa w Słupsku (<http://www.wsp.słupsk.pl-zabawki>) jest organizowana w ramach Dni Otwartych instytucji edukacyjnych Szkoły Pedagogicznej przez Państwowe Wyższe Szkoły Zawodowe przy współpracy z Instytutem Nauk. Dofinansowuje ją Komitet Badań Naukowych.

dydaktyka.fizyka.umk.pl/zabawki/files/archiv/Bialystok/karwasz.html

14,000 visitors: this was expected (by the society)

Fot. 7.1. Pierwsza edycja wystawy „Fizyki zabawek” w Polsce – Warszawa i Słupsk 1998: a) dyskusja przy eksponatach (od lewej A. Okoniewska, A. Kurowska, D. Pliszka, ówczesnie studenci II roku fizyki WSP w Słupsku, obecnie pracownicy naukowi różnych uczelni); b) emblemat wystawy – pochodzący z Bolzano misiek ekwilibrysta Ernest; c) mini-katalog wystawy – nazwa eksponatu i jego 3–4-wyrazowy opis (autor GK). Źródło: A. Kamińska, rozprawa doktorska, *Efektywność dydaktyczna multimedialnych form nauczania fizyki*, Biblioteka Główna UMK, Toruń 2009

1999: invitation to Polish Society Congress

7.2. „Zabawki” dla naukowców, Białystok 1999

Kolejna edycja „Fizyki zabawek” odbyła się jako impreza towarzysząca XXXV Zjazdowi Polskiego Towarzystwa Fizycznego we wrześniu 1999 roku w Białymstoku. Wystawa została zorganizowana przez WSP w Słupsku jako odpowiedź na inicjatywę prof. A. Maziewskiego. Tym razem pomocą służyli uczniowie miejscowych liceów, a część eksponatów została bezpośrednio zakupiona za granicą. Aranżacja przestrzeni wystawowej była stosunkowo prosta – wszystkie eksponaty ustawione były w sekwencji w jednej sali.

a)

b)

Fot. 7.2. Wystawa „Fizyka Zabawek” w Białymstoku: a) J. Friedman – laureat Nagrody Nobla i A.K. Wróblewski zwiedzający wystawę; b) obsługę prowadzili uczniowie białostockiego liceum (fot. A. Okoniewska)

A new target group: scientists
Diffusion by involvement of local secondary schools

Collection of 'every-day' objects

Innovative methods of ... | ch01 1.64 | Is There Purpose in Biol ... | MDPI | Peer Review | Physics - Directly Meas ... | Fizyka i zabawki

Niezabezpieczona | dydaktyka.fizyka.umk.pl/zabawki/

Home

Mechanika **Optyka** **Termodynamika** **Elektryczność i magnetyzm**

Mechanika

- Poczucie równowagi
- Kamień celtycki
- Wstający bączek
- Kroczące zwierzątki
- Wahadło Newtona
- Spadające piłeczki
- Lejek grawitacyjny
- Lejki nie-grawitacyjne
- Sprężyny i fale
- Schodząca sprężyna
- Podwójny stożek
- Wańka-wstańka
- Riki-tiki
- Odrzutowy samochód

javascript:loadtwo('mech/mech_menu.html','mech/mech.html')

Wpisz tu wyszukiwane słowa

20:24 18.11.2020

1.1. Sense of equilibrium

Innovative methods of ... | ch01 1.64 | Is There Purpose in Biol ... | MDPI | Peer Review | Physics - Directly Meas ... | Fizyka i zabawki

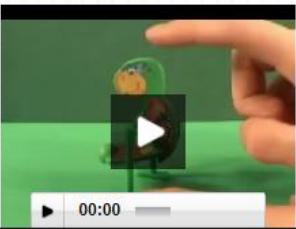
Home | Niezabezpieczona | dydaktyka.fizyka.umk.pl/zabawki/

Mechanika **Optyka** **Termodynamika** **Elektryczność i magnetyzm**

Poczucie równowagi

Ptak, który na pierwszy rzut oka zawisa nienaturalnie na dziobie, huśtająca się papuga, czy też miś ekwilibrysta - to zabawki, które prezentują zagadnienie środka ciężkości.

We wszystkich tych zabawkach "naturalny" środek ciężkości przesunięty został za pomocą dodatkowych ciężarków, tak aby rzeczywisty środek ciężkości znajdował się dokładnie pod punktem podparcia.


W przypadku ptaka dodatkowo obciążone są skrzydła, co przesuwa jego środek ciężkości w kierunku dzioba, tak iż w położeniu równowagi środek ciężkości znajduje się poniżej punktu podparcia. Podobnie rzec się ma w przypadku misia - zakrzywiona tyczka, którą ekwilibrysta trzyma w łapach - obciążona jest kulkami. Z kolei papuga i tukan huśtają się na podporce dzięki dodatkowemu obciążeniu ogonów.

Taka papuga nazywana jest czasem papugą Maxwella.

Mechanika

- [Poczucie równowagi](#)
- [Kamień celtański](#)
- [Wstający bączek](#)
- [Kroczące zwierzątki](#)
- [Wahadło Newtona](#)
- [Spadające piłeczki](#)
- [Lejek grawitacyjny](#)
- [Lejki nie-grawitacyjne](#)
- [Spreżyny i fale](#)
- [Schodząca spręzyna](#)
- [Podwójny stożek](#)
- [Wańka-wstańka](#)
- [Riki-tiki](#)
- [Odrzutowy samochód](#)

Wpisz tu wyszukiwane słowa

21:00 18.11.2020

Only real objects: no picture taken from internet

Innovative methods of | ch01 1.64 | Is There Purpose in Biol | MDPI | Peer Review | Physics - Directly Meas | Fizyka i zabawki

← → C Niezabezpieczona | dydaktyka.fizyka.umk.pl/zabawki/

Home Mechanika Optyka Termodynamika Elektryczność i magnetyzm

Ptak, w odróżnieniu od papugi Maxwella, która jest płaska, pokazuje jeszcze jeden aspekt położenia środka ciężkości. Jego "właściwe" ułożenie dotyczy obu (a raczej trzech) kierunków. Patrząc z góry, szeroko rozłożone skrzydła ptaka tworzą z jego ogonem jakby trójkąt: środek ciężkości tego trójkąta jest w punkcie podparcia. Patrząc z boku, nisko opuszczone końce skrzydeł zapewniają, że środek ciężkości jest poniżej punktu podparcia.

Kiedy wprawiamy zabawki w ruch drgający, ruszają się one leniwie. W zabawkach tych środek ciężkości znajduje się niedaleko od punktu obrotu (wahania), natomiast moment bezwładności jest stosunkowo duży. Zgodnie ze wzorem na okres drgań wahadła fizycznego

$$T = 2\pi \sqrt{\frac{I}{mzg}}$$

gdzie: I - moment bezwładności względem osi zawieszenia, z - odległość środka ciężkości od punktu zawieszenia, g - przyspieszenie ziemskie, stosunek I/mz nosi nazwę dлиги zredukowanej wahadła fizycznego, okres drgań jest stosunkowo długi.

Konstrukcyjna prosta tego typu zabawek umożliwia eksperymentowanie z różnym umiejscowieniem środka ciężkości oraz jego przestrzennym wyznaczeniem, czego przykładem mogą być "księciowa układanka", czy "kuchenny" model ptaka.

Additional object with the same idea

Own construction from 2 forks

Mechanika

- Poczucie równowagi
- Kamień celtycki
- Wstający bączek
- Kroczące zwierzątki
- Wahadło Newtona
- Spadające piłeczki
- Lejki grawitacyjny
- Lejki nie-grawitacyjne
- Sprężyny i fale
- Schodząca sprężyna
- Podwójny stożek
- Wańka-wstańka
- Riki-tiki
- Odrzutowy samochód

Wpisz tu wyszukiwane słowa

21:01 18.11.2020

One, long description

Innovative methods of ... | ch01 1.64 | Is There Purpose in Biol ... | MDPI | Peer Review | Physics - Directly Meas ... | Fizyka i zabawki

← → C A Niezabezpieczona | dydaktyka.fizyka.umk.pl/zabawki/

 Home

 Mechanika

 Optyka

 Termodynamika

 Elektryczność i magnetyzm

Wahadło Newtona

To zabawne tik-tak znajduje się na niejednym biurku znudzonego dyrektora - tik, tak, tik, tak, raz jedna kula raz dwie. Jak na filmie obok.

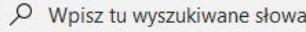
Zabawka to pięć stalowych kulek, każda zawieszona na dwóch żyłkach w ten sposób, że może wahać się tylko w jednym kierunku: tak aby się zderzyć z sąsiadnią.

Jeśli puścimy jedną kulę, jedna odskoczy z drugiej strony; jeśli dwie, to dwie odskoczą. A jeśli naraz, po jednej z obu końców?

Wahadło Newtona to przykład zderzeń ciał o tej samej masie - jak dwóch kul bilardowych. Po zderzeniu, kule bilardowe rozbiegają się pod kątem prostym.

No chyba, że zderzenie jest zupełnie centralne. Wówczas jedna się zatrzymuje, a druga rusza. Zdarzyło Ci się kiedyś wpaść na kolegę na szkolnym korytarzu?

Do zapewnienia zderzenia idealnie centralnego służą właśnie dwie żyłki.


A pozostałe kule? To tylko pośrednicy w zderzeniu, jak wagony kolejowe, w które uderzyła lokomotywa - po kolei uginają się ich zderzaki, ale odskoczy tylko wagon na końcu.

Spróbujmy poeksperymentować z wahadłem odchylając jedną, dwie i więcej kul pozwalając im zderzać się ze spoczywającymi.

Wahadło Newtona jest przykładem zasad zachowania energii i momentu pędu.

Rozważmy dwie kule, z których kula numer dwa spoczywa.

Przed zderzeniem ich suma masy, a po zderzeniu ogólna $m_1V + m_2V$. (małymi literami oznaczamy predkości kul przed zderzeniem, dużymi po zderzeniu: masy obu

 Wpisz tu wyszukiwane słowa

22:15 18.11.2020

, also with mathematical details

Innovative methods of... | ch01 1.64 | Is There Purpose in Biol... | MDPI | Peer Review | Physics - Directly Meas... | Fizyka i zabawki

Niezabezpieczona | dydaktyka.fizyka.umk.pl/zabawki/

Home Mechanika Optyka Termodynamika Elektryczność i magnetyzm

Wahadło Newtona jest przykładem zasady zachowania energii i momentu pędu.

Rozważmy dwie kule, z których kula numer dwa spoczywa.

Przed zderzeniem ich pęd wynosi mv_1 a po zderzeniu ogólnie mV_1+mV_2 (małymi literami oznaczamy prędkości kul przed zderzeniem, dużymi po zderzeniu; masy obu kul są takie same).

$$mv_1 = mV_1+mV_2 \quad (1)$$

(Ogólnie, to należałoby rozważyć nie wartości prędkości, ale i ich kierunki, czyli wektory V . Zmyślona konstrukcja, przypisywana Newtonowi, upraszcza zagadnienie.)

Oczywiście, jedno równanie nie pozwala na znalezienie niewiadomych prędkości dwóch kul, V_1 i V_2 .

Jeśli zderzenie jest sprężyste (stąd kule stalowe) to zachowuje się energia kinetyczna (w równaniu poniżej pominęliśmy czynnik $\frac{1}{2}$).

$$mv_1^2 = mV_1^2 + mV_2^2 \quad (2)$$

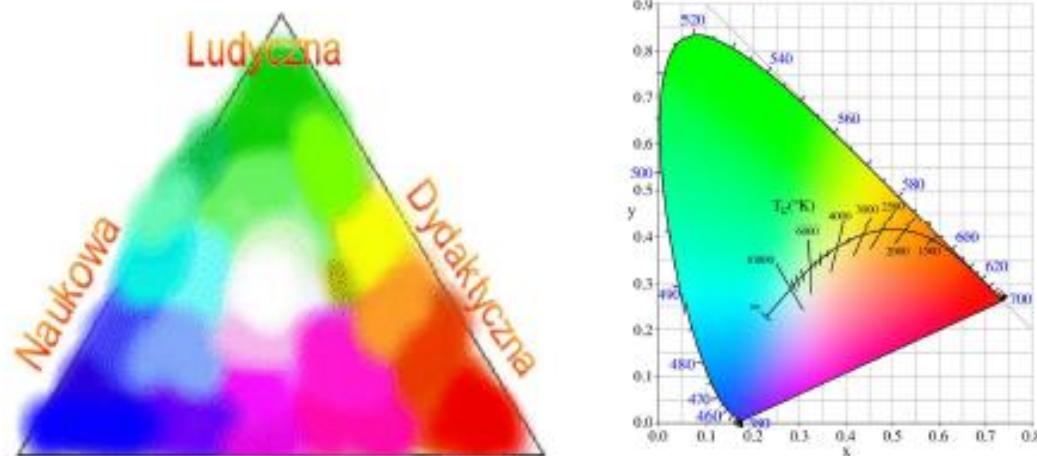
E=const, p=const

How one can solve it?

Gdy liczba jest sumą dwóch innych, to na pewno jej kwadrat nie jest sumą kwadratów tych samych liczb. (Nie byłoby potrzebne twierdzenie Pitagorasa: $3^2+4^2=5^2$, ale $3+4 \neq 5$)

No chyba, że jedna z tych liczb, np. V_1 , jest zerem. (Kto lubi rozwiązywać układy równań kwadratowych może sobie to wyliczyć "dokładnie". Mogliby i V_2 być zerem, ale wtedy nie byłoby zderzenia).

A teraz pobawmy się wahadłem


Kamień celtycki
Wstający bączek
Kroczące zwierzaki
Wahadło Newtona
Spadające piłeczki
Lejek grawitacyjny
Lejki nie-grawitacyjne
Spreżyny i fale
Schodząca sprężyna
Podwójny stożek
Wańka-wstańka
Riki-tiki
Odrzutowy samochód
Schodzący dzieciol
Foka

Wpisz tu wyszukiwane słowa

22:22 18.11.2020

Three functions of the lesson/ object/ message

Funkcja ludyczna, dydaktyczna i naukowa pozostają komplementarne i są ze sobą wymieszane, jak barwy na palecie malarza. Posługując się przykładem syntezy barw z kolorów podstawowych (zielonego, czerwonego, niebieskiego), możemy przedstawić trzy funkcje pedagogiczne eksploratorów w postaci trójkąta, podobnie jak to się dzieje dla trójkąta barw. Konkretny kolor, np. pomarańczowy, powstaje przez domieszkę koloru zielonego i bardzo niewielkiej ilości niebieskiego do koloru czerwonego. Dana wystawa może głównie bawić, a przy okazji też uczyć i włączać widza w pogłębianie zagadnień naukowych.

Rys. 3.3. Trzy funkcje oddziaływanie na widza w centrach nauki: zabawowa (ludyczna), przekazu wiedzy (dydaktyczna) i poznawcza (naukowa) nawzajem się uzupełniają, tak jak to jest w trójkącie

Who wants, can look at the exact solution

Mechanika

Optyka

Termodynamika

Elektryczność
i magnetyzm

Układ równań opisujących zderzenie ma postać:

$$mv_1 = mV_1 + mV_2$$

$$mv_1^2 = mV_1^2 + mV_2^2$$

czyli, po podzieleniu obustronnie przez m :

$$v_1 = V_1 + V_2$$

$$v_1^2 = V_1^2 + V_2^2$$

Wyznaczając z pierwszego równania V_2 i podstawiając do drugiego otrzymujemy, po uporządkowaniu, równanie:

$$V_1(V_1 - v_1) = 0$$

Istnieją dwa rozwiązania tego równania:

$$V_1 = 0$$

or $V_1 = v_1$ (no collision at all)

- ⊕ [Kamień celtycki](#)
- ⊕ [Wstający bączek](#)
- ⊕ [Kroczące zwierzaki](#)
- ⊕ [Wahadło Newtona](#)
- ⊕ [Spadające piłeczki](#)
- ⊕ [Lejek grawitacyjny](#)
- ⊕ [Lejki nie-grawitacyjne](#)
- ⊕ [Spreżyny i fale](#)
- ⊕ [Schodząca sprężyna](#)
- ⊕ [Podwójny stożek](#)
- ⊕ [Wańka-wstańka](#)
- ⊕ [Riki-tiki](#)

„Gravitational” funnel: orbits

Innovative methods of ... | ch01 1.64 | Is There Purpose in Biol ... | MDPI | Peer Review | Physics - Directly Meas ... | Fizyka i zabawki

← → C A Niezabezpieczona | dydaktyka.fizyka.umk.pl/zabawki/

Home Mechanika Optyka Termodynamika Elektryczność i magnetyzm

Lejek grawitacyjny

W dużym żółtym lejku, raz puszczonej moneta lub kulka kręci się coraz szybciej, aż wpadnie do środka. Tak kiedyś stanie się z Ziemią, która spadnie na Słońce. Ale za dopiero za kilka miliardów lat.

Kulkę możemy puścić na wiele różnych sposobów - po okręgu lub skośnie. Zataczane orbity są krzywymi stożkowymi, jak trajektorie planet i komet w polu grawitacyjnym Słońca. Planety poruszają się po orbitach prawie kołowych, a komety po wydłużonych elipsach, czasem po parabolach (wtedy są to komety „jednorazowe”).

Jeśli wypuścimy kulę równolegle do krawędzi (Film A), będzie ona wirować zakreślając prawie doskonął orbitę kołową, powoli ruchem spiralnym opadając ku dołowi; można łatwo zauważać jak prędkość kulki rośnie w miarę jak obniża się ona w lejku. Patrząc z góry jej ruch jest podobny do ruchu meteora złapanego przez przyciąganie grawitacyjne planety.

Fun

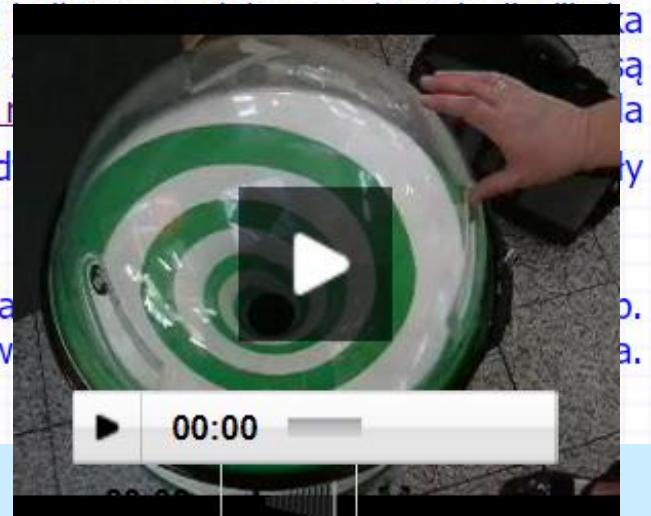
- Kamień celtycki
- Wstający bączek
- Kroczące zwierzątki
- Wahadło Newtona
- Spadające piłeczki
- Lejek grawitacyjny
- Lejki nie-grawitacyjne
- Spreżyny i fale
- Schodząca sprężyna
- Podwójny stożek
- Wańka-wstańka
- Riki-tiki
- Odrzutowy samochód

Wpisz tu wyszukiwane słowa

23:08 18.11.2020

One can show circular, elliptic, hyperbolic orbits.

„Gravitational” funnel: III Kepler law


Aby orbita była kołowa, prędkość początkowa musi spełniać określony warunek - ten który Johann Kepler wyznaczył dla planet: im planeta dalej od Słońca, tym się wolniej kręci. Dokładniej: kwadraty okresów obiegu mają się do siebie jak trzecie potęgi ich odległości: $T^2/r^3 = \text{const}$

Wyprowadza się to łatwo (dla orbit kołowych), ze wzoru na siłę grawitacji GMm/r^2 i siłę odśrodkową mv^2/r

$GMm/r^2 = mv^2/r$, czyli $GM = v^2r$ a ponieważ $v = 2\pi r/T$ mamy $r^3/T^2 = GM/4\pi^2 = \text{const}$

Dla innych lejków profil powierzchni różni się od hiperbolicznego. Ruch grawitacyjnego" - kulka przyspiesza w miarę zbliżania się do centrum. W (zamkniętymi) elipsami. Zamknięte elipsy otrzymuje się z rozwiązaniami ruchu grawitacyjnego ($1/r^2$) - pomyśl, jak zmieniałby się klimat na Ziemi, gdy corzą to o innej porze roku.

Jak pokazał Einstein w 1915 roku, krzywizna czasoprzestrzeni, wywołana Słońca) powoduje, że położenie osi elips podlega powolnemu obrotowi, w Dla Merkurego obrót tych osi wynosi 43" na stulecie [1].

Didactics

Listening the ball falling into center illustrates III law

„Gravitational” funnel: II Kepler law

$$\frac{d\varphi}{dt} = \frac{p}{mr^2}$$

podstawiając powyższe wyrażenie do prawa zachowania energii (4) otrzymujemy

$$\frac{1}{2}m\left[\left(\frac{dr}{dt}\right)^2 + \frac{p^2}{m^2r^2}\right] = E + \frac{GMm}{r}$$

Po przekształceniach

University didactics

$$\left(\frac{dr}{dt}\right)^2 + \frac{p^2}{m^2r^2} = \frac{2E}{m} + \frac{2GM}{r}$$

$$\frac{dr}{dt} = \pm \sqrt{\frac{2E}{m} + \frac{2GM}{r} - \frac{p^2}{m^2r^2}}$$

Ellipse equation in polar coordinates

Research function: non-gravitational funnels

Lejki nie-grawitacyjne

O ile lejek hiperboliczny jest modelem ruchu w polu grawitacyjnym (taki lejek znajdziecie np. w hotelu "Partas" w Naplion w Grecji, służy jako taboret w łazience) inne lejki modelują inne oddziaływanie.

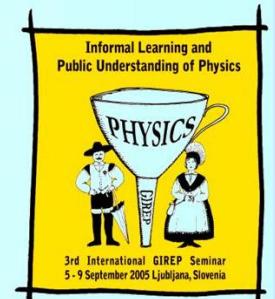
Na przykład wiadomo, że w oddziaływaniach silnych, wewnątrz protonu lub neutronu, siła oddziaływania między kwarkami rośnie wraz z odległością - z tego względu nie obserwuje się swobodnych kwarków, poza bardzo małymi odległościami. Modelem takiego oddziaływania może być lejek "paraboliczny".

Ability to observe and capture objects that can trigger didactical interest.

Why orbits are open? Because only for $1/r$ and r^2 potentials the Hamiltonian commutes with the angular momentum operator.

Physics in funnels

T. Wróblewski¹⁾, A. Niedzicka²⁾, W. Niedzicki³⁾, M. Brunato⁴⁾, G. P. Karwasz^{1,4)}


¹⁾ Institute of Physics, Pomeranian Pedagogical Academy, 76-200 Slupsk, Poland

²⁾ Amernet Sp. z o.o. 01-541 Warszawa, Poland

³⁾ Dept. Mechatronics Warsaw Technical University and Polish TVd, 02-525 Warszawa, Poland

⁴⁾ Trento University, Engineering Faculty of Engineering & Department of Informatics, 38050 Povo, Italy

tomek@if.pap.edu.pl

GIREP emblem is a funnel
- It seems a parabolic one

"Gravitational" funnels are used for illustrating motion of planets: orbits of balls or coins are in these funnels, to the first approximation, closed. This reflects particular form of the gravitational potential, $1/r$ and is important, say, for the constancy of the climate on Earth. In real gravitational funnels the orbits are not exactly closed, due to finite dimensions of coins, their spin motions and not exact $1/r$ potential. If you take any funnel, orbits are open immediately, not into the "first" approximation. The only other potential assuring closed orbits is the harmonic one, r^2 , i.e. a ball kept by springs. This is due to a particular property of the Hamiltonian for these two interactions, which is transformable into a linear function of the action. So funnels can be used to explain Physics, not only to transfer it into pupils brains.

Funnels and hamiltonian

Hyperbolic funnel

We show here that if the hamiltonian of the system, instead of the "ordinary" general coordinates, i.e. position and momentum can be expressed as a function of the rotation angle and angular momentum, then the trajectories are closed.

The dependence to show is:

$$H = H(q^i, p_i), \quad H = H(\varphi^i, I_i)$$

We recall relations for the Hamiltonian in "usual" coordinates

$$\begin{aligned} q^i &= \frac{\partial H}{\partial p_i} & \varphi^i &= \varphi^i - \frac{\partial H}{\partial I_i} \\ p_i &= -\frac{\partial H}{\partial q^i} & I_i &= -\frac{\partial H}{\partial \varphi^i} \end{aligned}$$

Knowing that for the central field the angular momentum is constant

$$I_i = -\frac{\partial H}{\partial \varphi^i} = 0$$

So the Hamiltonian can be defined

$$H = H(q^i, p_i), \quad H = H(I_i)$$

and we can define also an angular velocity

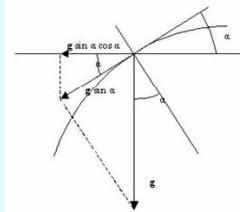
$$\dot{\varphi}^i = \frac{\partial H}{\partial I_i} = \omega(I_i)$$

dependent only on angular momentum.

If so, the trajectories are closed.

In practice, only for the classical harmonic oscillator ($E \sim r^2$) and the hyperbolic field ($E \sim 1/r$) the trajectories are closed.

Trajectories in a central field
(thanks to prof. E. Pagani)

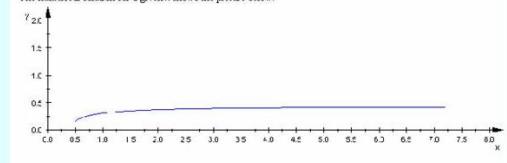

Programme for calculating orbits with fields $V=-1/r^n$ ©MauroB runato
This snapshot was with $n=1.1$

Funnels and planets

Best gravitational funnel

We are looking for a construction function for the funnel to obtain the force proportional to $\frac{1}{x^2}$. Calculating the centripetal component of the gravitational force we obtain for the shape $f(x)$:

$$g \cdot \sin \alpha \cdot \cos \alpha = g \cdot \frac{\tan \alpha}{\sqrt{1+\tan^2 \alpha}} \cdot \frac{1}{\sqrt{1+\tan^2 \alpha}} = \frac{g \cdot \tan \alpha}{1+\tan^2 \alpha} = \frac{g \cdot f'}{1+(f')^2} \quad (1)$$



So the searched function must follow the differential equation $\frac{f'}{1+(f')^2} = \frac{k}{x^2}$ (2)

The hyperbolic funnel is described by $f(x) = \frac{-1}{x} + C$, so for the left side of eq.(2) we read $\frac{1}{1+\frac{1}{x^2}} = \frac{x^2}{x^2+1}$ instead of $\frac{1}{x^2}$.

We are searching the function which would approximate (2) above a certain x_0 .

For $x = \sqrt{2k}$ it can be a function $f = \frac{1}{2k} \left(\frac{x^3}{3} - \int_{\sqrt{2k}}^x \sqrt{t^4 - (2k)^2} dt \right) + c = \frac{x^3}{6k} - \int_{\sqrt{2k}}^x \frac{\sqrt{t^4 - 4k^2}}{2k} dt + c$
The numerical solution for a given k shows the picture below.

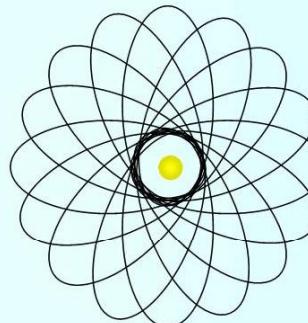
Who will construct such a funnel?

©Anna Niedzicka

Funnels and planets

Berechnet man das Gravitationsfeld um eine Größe-ordnung genauer, und ebenso mit entsprechender Genauigkeit die Bahnbewegung eines materiellen Punktes von relativ unendlich kleiner Masse, so erhält man gegenüber den Képler-Newtonschen Gesetzen der Planetenbewegung eine Abweichung von folgender Art. Die Bahnellipse eines Planeten erfährt in Richtung der Bahnbewegung eine langsame Drehung vom Betrage

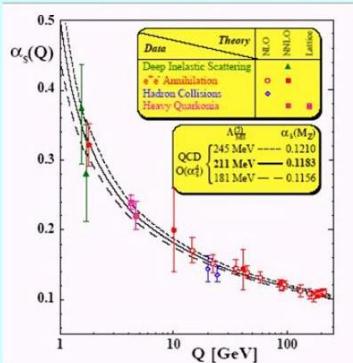
$$(75) \quad \epsilon = 24 \frac{\pi^2}{T^2 c^5} \frac{a^3}{(1 - e^2)}$$


pro Umlauf. In dieser Formel bedeutet a die große Halbachse, c die Lichtgeschwindigkeit in üblichem Maße, e die Exzentrizität, T die Umlaufzeit in Sekunden.)

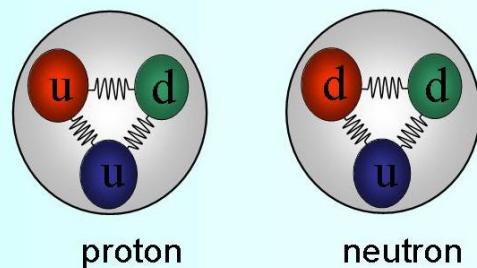
Die Rechnung ergibt für den Planeten Merkur eine Drehung der Bahn um $48''$ pro Jahrhundert, genau entsprechend der Konstaterung der Astronomen (Leverrier); diese fanden nämlich einen durch Störungen der übrigen Planeten nicht erklärbaren Rest der Perihelbewegung dieses Planeten von der angegebenen Größe.

1) Bezuglich der Rechnung verweise ich auf die Originalabhandlungen A. Einstein, Sitzungsber. d. Preuß. Akad. d. Wiss. 47, p. 831. 1915. — K. Schwarzschild, Sitzungsber. d. Preuß. Akad. d. Wiss. 7, p. 189. 1916.

(Eingegangen 20. März 1916.)


It was known from mid of XIX century, that Mercury planet performs an open orbit. Einstein in 1916 explained why: the field is slightly different from $1/r$, due to a huge mass of Sun (which changes the geometry of Space). This was one of the proofs for General Theory of Relativity. (Note how he always accomplished theoretical paper with practical results.)

Precession of Mercury's orbit
(as seen in snapshots for 200,000 years)


This spherical funnel gives Nice open orbits

S. Bethke, α_s , 2002
http://arxiv.org/PS_cache/hep-ex/pdf/0211/0211012.pdf

The confinement force between quarks rises to infinity if they move slowly, i.e. are distant one from another.

Funnels and quarks

Inside the proton or neutron strong interactions between quarks increase with the distance – from this reason we do not observe free quarks. Parabolic funnels can be models for these interactions.

Funnels and economy

Finally, funnels are not only scientific, but sometimes also useful, collecting spare coins at London Stansted airport

From a simple, funny object – to general relativity and quark's confinements

Physics and Toys – in virtual space Great success thanks to „open source”

Fizyka dla każdego

Szukaj na stronie Ostatnio dodane Strona Wydziału FIAT LUX

Przegląd prasy Dla nauczycieli Dla młodzieży Przyroda Video-fizyka Fizyka współczesna Projekt FCHGo

Wykłady

- Wykłady dla szkół
- Budowa i podstawowe właściwości materiałów
- Dydaktyka fizyki
- Dydaktyka kognitywistyczna
- Dydaktyka multimedialna
- Elektromagnetyzm
- Fizyka Ogólna dla AiR
- Fizyka współczesna
- Innovative methods of didactics
- Relacje nauka - wiara

Laboratoria

- Doświadczenia komputerowe
- Laboratorium elektromagnetyzmu
- Laboratorium metodyki eksperymentu
- Laboratorium multimedialne

Wykłady FCHgo w Mikołajkach Pomorskich oraz Prabutach / FCHgo lectures in Mikołajki Pomorskie and Prabuty
admin, pon., 2020-11-16 20:58

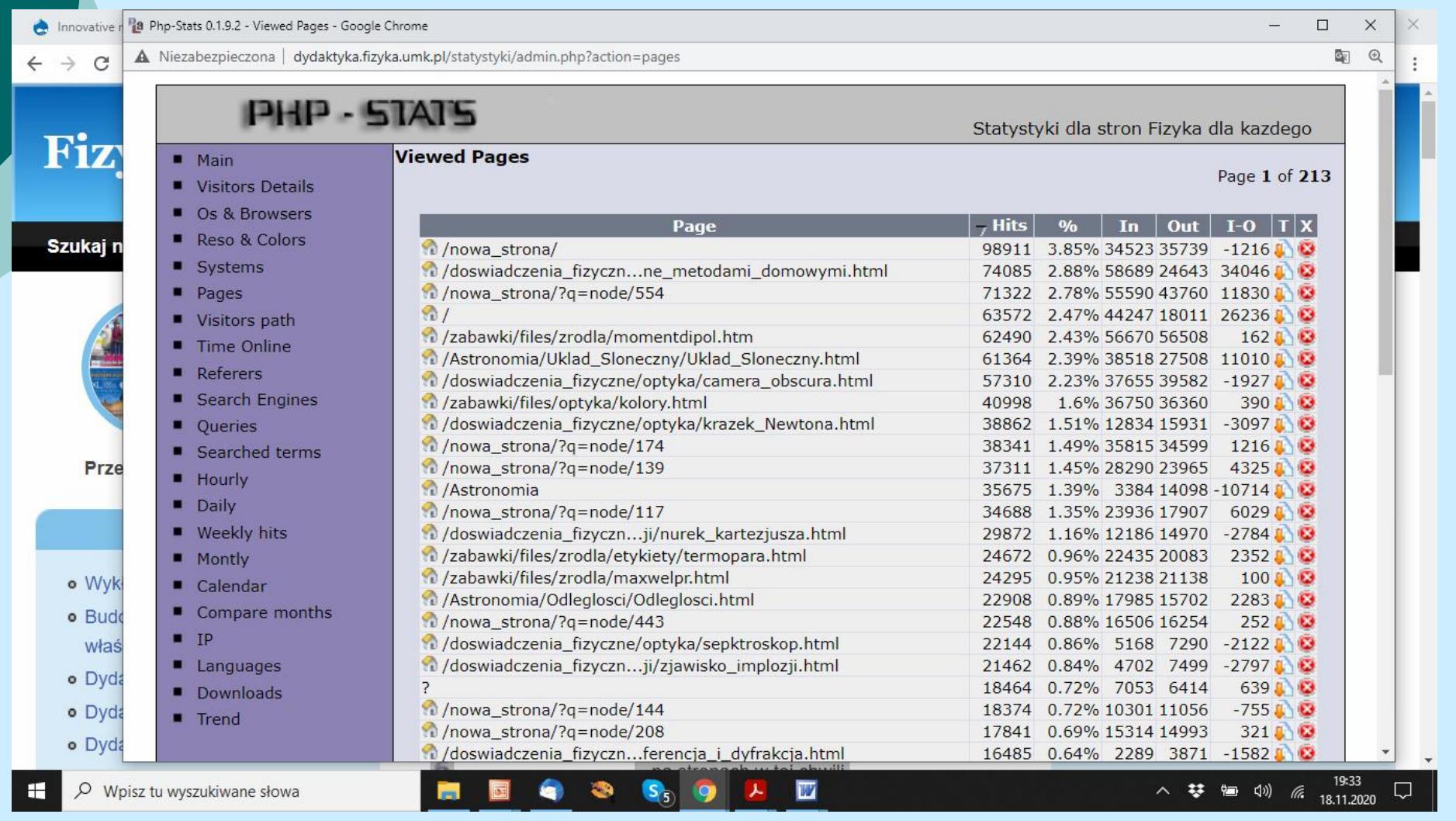
W dniach 12 oraz 16 listopada 2020 roku dr hab. Kamil Fędus przeprowadził lekcje on-line dla uczniów Szkoły Podstawowej nr 2 w Prabutach oraz Szkoły Podstawowej w Mikołajkach Pomorskich w ramach realizacji projektu **FCHgo – Discover the energy of hydrogen**. Lekcje poruszały zagadnienie energii, wodoru oraz ogniw paliwowych.

Dziękujemy nauczycielom oraz dyrekcji obydwu szkół za pomoc w realizacji zajęć.

About 250,000 hits every year

XIII Seminarium Dydaktyki Fizyki KwSzLP

Szanowni Państwo,


zapraszamy Państwa na XIII (już!) Seminarium Dydaktyki Fizyki "Komputer w Szkolnym Laboratorium Przyrodniczym", które odbędzie się w dniach od 3 do 5 grudnia 2020 roku w formie zdalnej na platformie WEBEX.

FCHgo!

Wpisz tu wyszukiwane słowa

19:31 18.11.2020

2,5 mln hits from 2009: „zabawki”, „doświadczenia” = 30%

PHP-STATS

Statystyki dla stron Fizyka dla kazdego

Page 1 of 213

Page	Hits	%	In	Out	I-O	T	X
/nowa_strona/	98911	3.85%	34523	35739	-1216	162	162
/doswiadczenia_fizyczne_metodami_domowymi.html	74085	2.88%	58689	24643	34046	11830	11830
/nowa_strona/?q=node/554	71322	2.78%	55590	43760	11830	26236	26236
/	63572	2.47%	44247	18011	26236	162	162
/zabawki/files/zrodla/momentdipol.htm	62490	2.43%	56670	56508	162	390	390
/Astronomia/Uklad_Sloneczny/Uklad_Sloneczny.html	61364	2.39%	38518	27508	11010	1927	1927
/doswiadczenia_fizyczne/ptyka/camera_obscura.html	57310	2.23%	37655	39582	-1927	390	390
/zabawki/files/ptyka/kolory.html	40998	1.6%	36750	36360	390	3097	3097
/doswiadczenia_fizyczne/ptyka/krazek_Newtona.html	38862	1.51%	12834	15931	-3097	1216	1216
/nowa_strona/?q=node/174	38341	1.49%	35815	34599	1216	35675	35675
/nowa_strona/?q=node/139	37311	1.45%	28290	23965	4325	100	100
/Astronomia	35675	1.39%	3384	14098	-10714	6029	6029
/nowa_strona/?q=node/117	34688	1.35%	23936	17907	6029	29872	29872
/doswiadczenia_fizyczne/ji/nurek_kartezjusza.html	29872	1.16%	12186	14970	-2784	24672	24672
/zabawki/files/zrodla/etykiety/termopara.html	24672	0.96%	22435	20083	2352	24295	24295
/zabawki/files/zrodla/maxwelpr.html	24295	0.95%	21238	21138	100	22908	22908
/Astronomia/Odleglosci/Odleglosci.html	22908	0.89%	17985	15702	2283	22548	22548
/nowa_strona/?q=node/443	22548	0.88%	16506	16254	252	22144	22144
/doswiadczenia_fizyczne/ptyka/sepktroskop.html	22144	0.86%	5168	7290	-2122	21462	21462
/doswiadczenia_fizyczne/ji/zjawisko_implozji.html	21462	0.84%	4702	7499	-2797	18464	18464
?	18464	0.72%	7053	6414	639	18374	18374
/nowa_strona/?q=node/144	18374	0.72%	10301	11056	-755	17841	17841
/nowa_strona/?q=node/208	17841	0.69%	15314	14993	321	16485	16485
/doswiadczenia_fizyczne/ferencja_i_dyfrakcja.html	16485	0.64%	2289	3871	-1582		

Wpisz tu wyszukiwane słowa

19:33 18.11.2020

Gdańsk (2003): towards diversity

Home

Mechanika

Optyka

Termodynamika

zjawisk fizycznych zarówno uczniom szkół jak i fizycznym znakomitościom, które przybyły na zjazd.

"Fizyka i zabawki" zaprezentowała kolekcję ponad 250 eksponatów demonstrujących zjawiska fizyczne w trzech ścieżkach tematycznych poświęconych zagadnieniom: ruchu i dźwięku, światła oraz ciepła. Demonstracje skierowane były przede wszystkim do uczniów i nauczycieli.

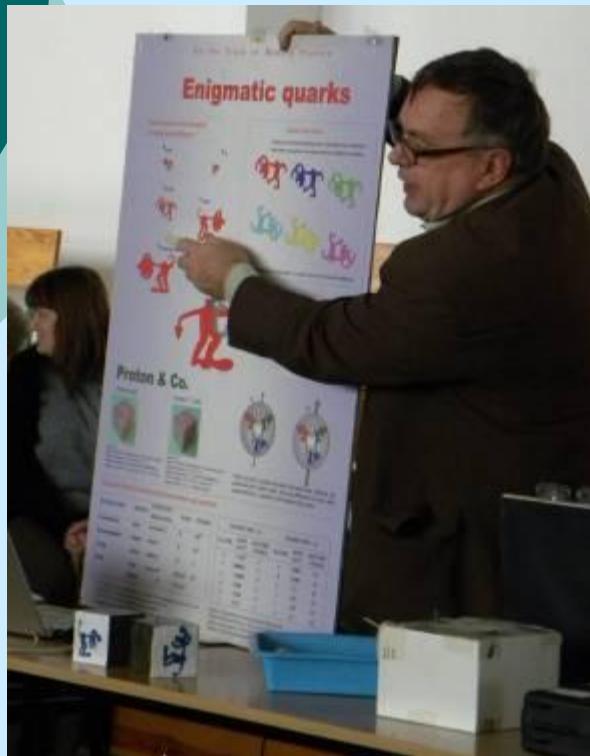
Fot. 3. "Droga do fizyki współczesnej" - na chwilę przed odwiedzinami.

wodór. Była to propozycja dla nauczycieli fizyki w gimnazjum lub szkole średniej, jak w prosty sposób, bez większych wkładów pieniężnych, wzbogacić pracownię o nowe pokazy ilustrujące zjawiska z elektrostatyki, zasady działania ogniw galwanicznych i fotowoltaicznych.

Łącznie w czasie trwania wystawy odwiedziło ok. 4 tys. osób.

"Droga do fizyki współczesnej" zilustrowała rozwój fundamentalnych dla współczesnego fizycznego opisu świata koncepcji, począwszy od atomizmu Demokryta, poprzez idee Maxa Plancka przedstawione na wykładzie podczas posiedzenia Niemieckiego Towarzystwa Fizycznego w Berlinie, 19 października 1900 roku, który otworzył "worek" nowych koncepcji i doświadczeń, skończywszy na artykulach Alberta Einsteina pochodzących z 1905 roku dotyczących szczególnej teorii względności.

"204 lata ogniw Volty" odtworzyła historię odkryć i zasady działania źródeł prądu od oryginalnego stosu monet Volty do ogniva "paliwowego" na gazowy


Fot. 2. "Fizyka i zabawki" - nauczyciele podczas "torturowa schodzącej sprężyny

Strategies for Cognitive Didactics

Neo-realism

GK ↔ Einstein:
Everything that can be shown should be shown,
and even more.

Didactical tunnel: Going downhill

- **Dlaczego ciała spadają?** Bo działa na nie grawitacja?
- A dlaczego podskakuję, zsuwają się, staczają?
- Też grawitacja? To chyba jest nieco bardziej skomplikowane.
- Jak odróżnić ruch jednostajny od przyspieszonego?
- A jak ciała przyspieszają? A kiedy jest tarcie to też przyspieszają?
- Na te wszystkie pytania – szkolne i domowe – odpowiada wystawa „**Z górką na pazurki**”

Didactical tunnel: Going donwhill

- **Why do objects fall?** Because of gravitation (=heaviness)?
- And why do they jump, slide down, roll-down?
- Also gravitation? Maybe it is more complicated.
- How can we distinguish a uniform motions from uniformly accelerated?
- And how do objects accelerate? And with friction – do they also accelerate?
- Answers to all these questions – from school and home – gives the exhibition „**Going downhill**”

8. Pedagogical „by-products”

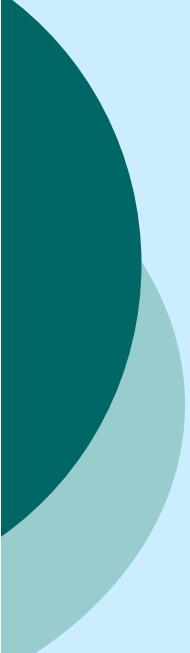
Individual decision - making
Individual responsibility
Individual visibility
In-dividual personality

8. Social „by-products”

Individual roles
Self-division of tasks
Group collaboration
Solidarity of the class

Learning is joyful (emotional)

Free inquiring, autonomous answering


Division of tasks (thanks to well defined scenarios)

Free inquiring, autonomous answering

Again: self-explaining objects induces correct experiments

Hyper-constructivism & Neo-realism

- These two main strategies:
 - 1) constructing the knowledge by pupils, but under a strict and wise control of the
 - 2) using all available (i.e. really existing) resources
 - objects, experiments, books, internet
- we define as:
 - **hyper-constructivism** (i.e. going beyond the social constructivism, in which the knowledge is merely discussed and socially accepted)
 - **neo-realism** – all that what can be shown should be shown (illustrated, taught), must be shown, and even more (GK↔A. Einstein)

Hyper-constructivism: principles

- Information is pan-available
- Teaching is *interactive*
- Sum of individual knowledges is the starting *resource*
- First, that is teacher who defines *implicitly* the arrival goal (i.e. a law, a principle, a phenomenon).
- The heuristic goal corresponds to *ontological category* (Kant)
- Teacher has to *induce* this category in the mind of student
- The arrival path is defined (case-by-case) *according* to the knowledge of audience
- In constructing the arrival path the teacher uses the knowledge available in the target group and (physics) on *ad-hoc* experiments (or texts, in languages)
- **Learning becomes an active (and involving) discovery**

