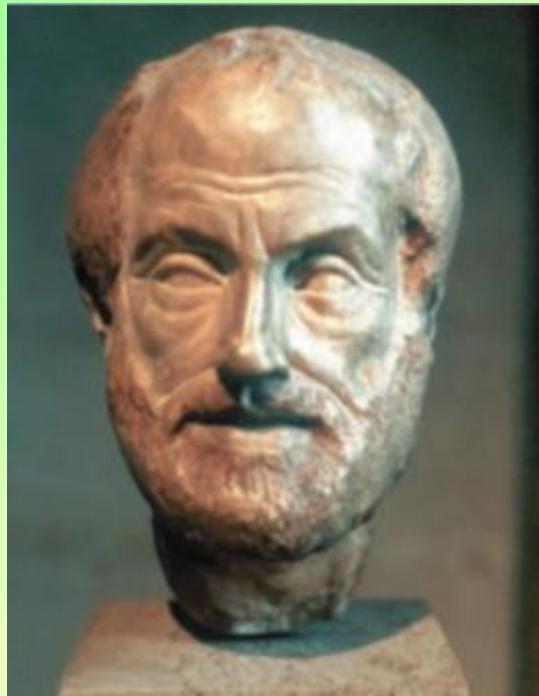


Innovative methods of didactics

Lecture 3

Textbooks – some examples, not only in physics


Part II Physics

Grzegorz Karwasz

Didactics of Physics Division UMK, Toruń, Head

a/a 2020/2021

Aristotle: „Physics”

Aristotle (384 – 322 boe)

- § 1 ·When the objects of an inquiry, in any department, have principles, causes, of elements, it is through acquaintance with these that knowledge and understanding is attained. For we do not think that we know a thing until we are acquainted with its primary causes or first principles, and have carried our analysis as far as its elements. Plainly, therefore, in the science of nature too our first task will be to try to determine what relates to its principles.

184 a17-184 a21

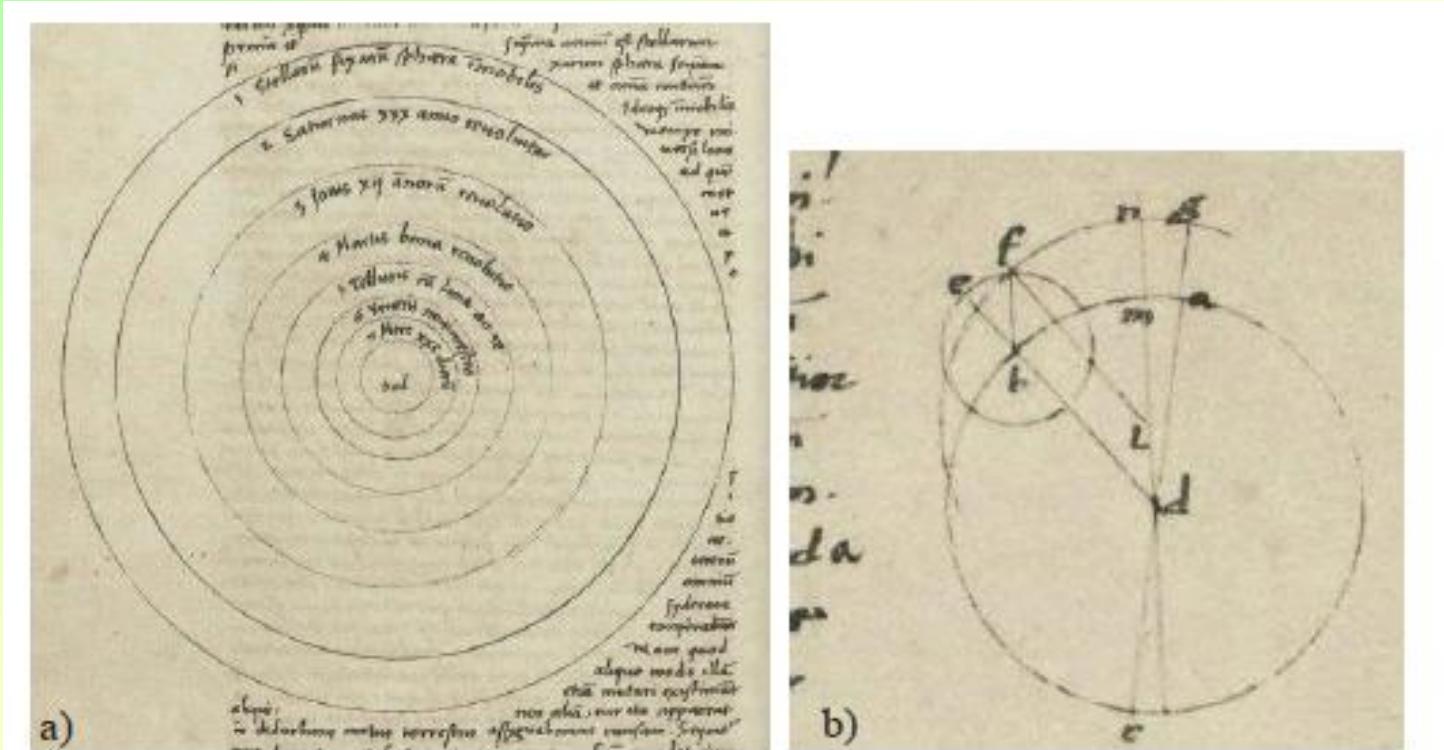
- The natural way of doing this is to start from the things which are more knowable and clear to us and proceed towards those which are clearer and more knowable by nature; for the same things are not knowable relatively to us and knowable without qualification. So we must follow this method and advance from what is more obscure by nature, but clearer to us, towards what is more clear and more knowable by nature.

Aristotle

- Further, no one could say why a thing once set in motion should stop any-where; for why should it stop *here* rather than *here*? So that a thing will either be at rest or must be moved *ad infinitum*, unless something more powerful gets in its way.

(*Physics*, 215 a19 - 215 a21)

First law of Newton
or principle of inertia
by John Buridan (~1300 DC)


Third law of mechanics
by Cartesius:

„In a collision, a body loses as much of its momentum as the second body gains.”

[film1.mp4](#)
[film2.mp4](#)

Copernicus (1473-1543)

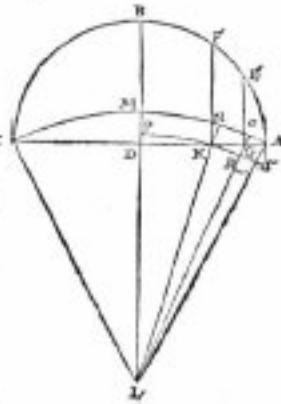
Ryc. 1.2. a) Rysunek z 18. strony rękopisu dzieła Kopernika; genialny uczyony zaraz na wstępnie, przed zagłębieniem się w szczegóły, wyjaśnia istotę swojego odkrycia: planety krążą dookoła Słońca i im ich orbity są bliższe Słońcu, tym okres obiegu jest krótszy; **b)** kolejny rysunek z rękopisu Kopernika; do orbit kolistych Kopernik dodał epicykle, tak jakby wiedział, że orbity nie są dokładnie kolisty.

De Revolutionibus orbium coelestis, Norimberga, 1543

G. Karwasz, *Toruński poręcznik do fizyki. IV Fizyka współczesna*, UMK 2020.

De Revolutionibus: (first?) experimental & deductive treaty

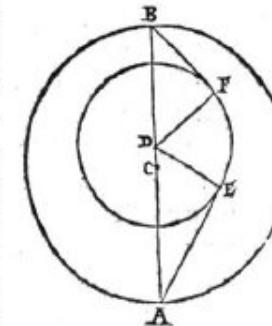
Three (?) movements of Earth


REVOLUTIONVM LIB. III. 63

diorem apud circumferentiam facile demonstratur. Sit enim semicirculus ABC, centrum eius D, dimetiens ADC, & secetur bisectam in E signo; afflumantur autem circumferentiae A B, & B F aequales, & ab E B signis in ipsam A D C perpendiculares agantur E G, & E K. Quoniam igitur dupla D K subtendit duplum B F, & dupla E G duplum ipsius A B: aequales igitur sunt D K & E G: sed A G per septimam tertij elem. Euclidis, minor est ipsi E G, minor etiam erit ipsi D K. Aequales igitur tempore pertransierunt G A & K D, propter A B & B F circumferentias aequales. Tardior ergo motus est circa A circumferentiam quam circa D centrum. Hoc demonstrato: Suscipiat iam ceterum terrae in L, ita ut ipsa

NICOLAI COPERNICI

Aequalis motus praecessionis aequinoctiorum in annis & sexag.


Anni	MOTVS	Anni	MOTVS
1	0 0 0 50 12	31	0 0 25 50 14
2	0 0 1 40 24	32	0 0 20 46 26
3	0 0 2 30 36	33	0 0 27 36 38
4	0 0 3 20 48	34	0 0 28 26 50
5	0 0 4 11 0	35	0 0 29 17 2
6	0 0 5 1 12	36	0 0 30 7 15
7	0 0 5 51 24	37	0 0 30 57 27
8	0 0 6 41 36	38	0 0 31 47 39
9	0 0 7 31 48	39	0 0 32 37 51
10	0 0 8 21 0	40	0 0 33 27 53

Venus's motion

Quæ sit ratio dimetientium orbis terræ & Veneris. Cap. XXI.

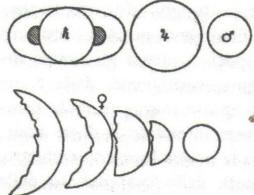
Proinde etiam ex his ratio constabit diametrorum orbis terræ & Veneris. Describatur enim orbis terræ A B, in centro C, dimetiens eius A C B per utramque absida, in qua capiatur D centrum orbis Veneris, ex centri ad A B circulum. Sit autem apogæi locus A, in quo existente terra plurimum distabat centrum orbis Veneris, dum esset ipsa A B medij motus Solis linea, ad part. XIII. & tertiam. In vero ad part. CCXXVIII. & tertiam. Agantur etiam rectæ lineæ A B, B F, contingentes orbem Veneris in B F signis, & connectantur D E, D F. Quoniam igitur qui sub D A E, angulus subtendit ad centrum circuli partes circumferentiarum XLIII. & quatuor quintas. Et angulus A B D est rectus, erit triangulum D A B datorum angulorum, ac deinde

NICOLAI COPERNICI

Veneris prosthaphæreses.

Numeris communes,	Aequatio eccentrici.	Scrup. proportionum	Parallaxes orbitis.	Excellus parallaxeos.
Gra. Gra.	Gra. scr.	scr. 2°	G. scr.	G. scr.
3 357	0 6	0 0	1 15	0 1
6 354	0 13	0 0	2 30	0 2
9 351	0 19	0 10	3 45	0 3
12 348	0 25	0 39	4 59	0 5

Galileo Galilei (1564 – 1642)


332

GALILEO GALILEI

Giove non più come una piccolissima stella radiante, ma come una Luna rotonda, ben grande e terminata. E se la stella sarà assai più piccola di Giove, ma di splendore molto fiero e vivo, qual è, per esempio, il Cane, il cui diametro non è la decima parte di quel di Giove, nulla di meno la sua irradiazione è poco minor di quella di Giove, il telescopio, accrescendo la stella ma non la chioma, fa che, dove prima il piccolissimo disco tra si ampio fulgore era impercettibile, già fatto in superficie 400 e più volte maggiore, si può distinguere ed assai ben figurare. Con tal fondamento andate discorrendo, ché potrete disbrigarvi per voi stesso da tutti gl'intoppi.

E rispondendo alle vostre instanze, quando dal signor Mario e da me è stato detto che 'l telescopio spoglia le stelle di quel coro-namento risplendente, ciò è stato profferito non con intenzione d'avere a stare a sindacato di persone così puntuali come siete voi, che, non avendo altro dove attaccarvi, vi conducete sino a dannar con lunghi discorsi chi prende il termine usitatissimo d'infinito per grandissimo. Quando noi abbiamo detto che il telescopio spoglia le stelle di quello irraggiamento, abbiamo voluto dire ch'egli opera intorno a loro in modo che ci fa vedere i lor corpi terminati e figurati come se fussero nudi e senza quello ostacolo che all'occhio semplice asconde la lor figura. È egli vero, signor Sarsi, che Saturno, Giove, Venere e Marte all'occhio libero non mostrano tra di loro una minima differenza di figura, e non molto di grandezza seco medesimi in diversi tempi? e che coll'occhiale si veggono, Saturno come appare nella presente figura, e Giove

e Marte in quel modo sempre, e Venere in tutte queste forme diverse? e, quel ch'è più meraviglioso, con simile diversità di grandezza? si che cornicolata mostra il suo disco 40 volte maggiore che rotunda, e Marte 60 volte quando è perigeo che quando è apogeo, ancor che all'occhio libero non si mostri più che 4 o 5? Bisogna che rispondiate di sì, perché queste son cose sensate ed eterne, si che non si può sperare di poter per via di sillogismi dare ad intendere che la cosa passò altrimenti. Or, l'operare col tele-

NUNZIO SIDEREO

75

* * ○ * * Occ.

entrambe abbastanza visibili; le altre due erano vicine a Giove, e molto piccole, soprattutto quella ad oriente, iva da Giove zero minuti, 40 secondi; l'occidentale ne 1 minuto. Alle quattro la stellina che era più vicina a Giove, non appariva più.

no tredici, a ore zero, 30 minuti, apparivano due stelle ad due ad occidente.

* * ○ * * Occ.

itale più vicina a Giove, abbastanza chiara, distava da inuti; da questa la più orientale, meno visibile, distava Fra le occidentali, la più lontana da Giove, meno visibile, 11 minuti; fra questa e Giove si interponeva una stella più vicina alla stella più occidentale, distando da n più di zero minuti, 30 secondi. Erano tutte sulla stessa ttamente secondo la linea dell'eclittica.

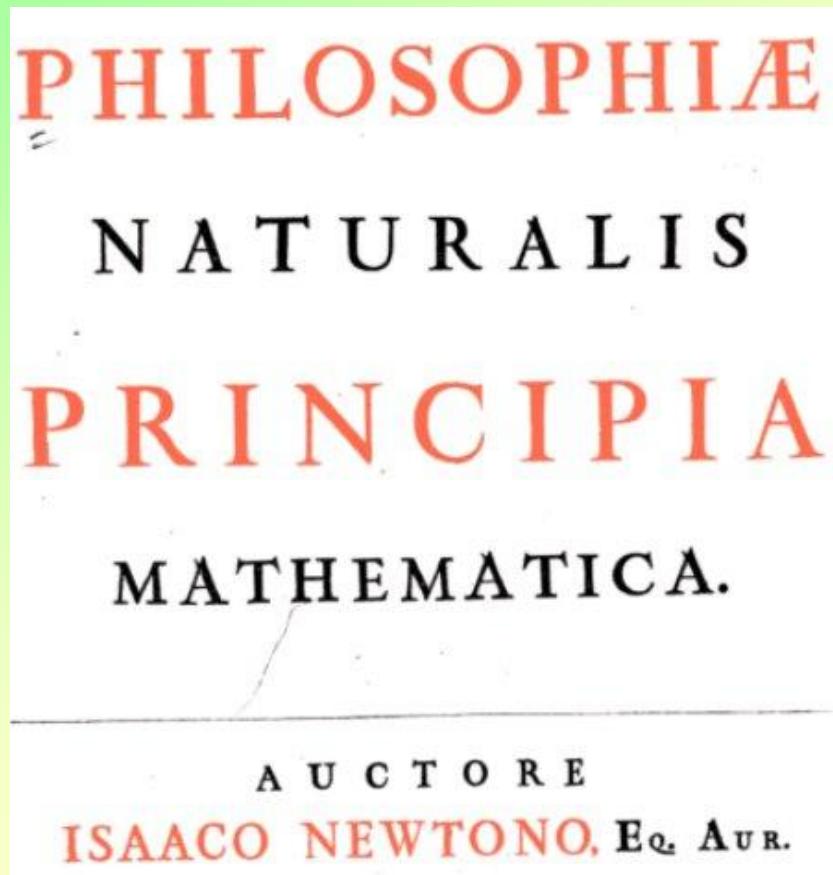
no quindici (il quattordici il cielo era stato coperto da m'ora, tale era la posizione degli astri:

* * ○ Occ.

oè tre stelle a oriente, e nessuna se ne vedeva a occidente: più vicina a Giove ne distava zero minuti, 50 secondi; iva distava da questa zero minuti, 20 secondi; da questa più orientale distava 2 minuti, ed era maggiore delle altre; nte a Giove erano infatti molto piccole. Ma, verso le stelle vicine a Giove se ne vedeva solo una,

* * ○ Occ.

a esso zero minuti, 30 secondi; la distanza da Giove della ale era aumentata: era infatti allora di 4 minuti. Ma, tre le due, come ora si disse, poste ad oriente, si vedeva dente una stellina, molto piccola, distante da Giove 2


* * ○ * Occ.

Satellites of Jupiter

Phases of Venus

But still much like Plato's dialogues

Newton (1643/44 - 1727)

He did „everything” here:

- Three laws of dynamics
- Centripetal force
- Gravity
- Frequency of a string
- Defined viscosity
- Defined aerodynamics
- Derived Kepler's laws
- Explained comet's

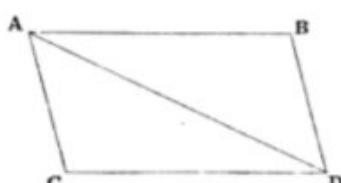
Written in Latin, what allowed great diffusion all over Europe

https://books.google.pl/books/about/Philosophiae_Naturalis_Principia_Mathema.html

LEX I.

Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus illud a viribus impressis cogitur statum suum mutare.

PROJECTILIA perseverant in motibus suis, nisi quatenus a resistentia aëris retardantur, & vi gravitatis impelluntur deorsum. Trochus, cujus partes cohærendo perpetuo retrahunt sese a motibus rectilineis, non cessat rotari, nisi quatenus ab aëre retardatur. Majora autem planetarum & cometarum corpora motus suos & progressivos & circulares in spatiis minus resistentibus factos conservant diutius.


LEX II.

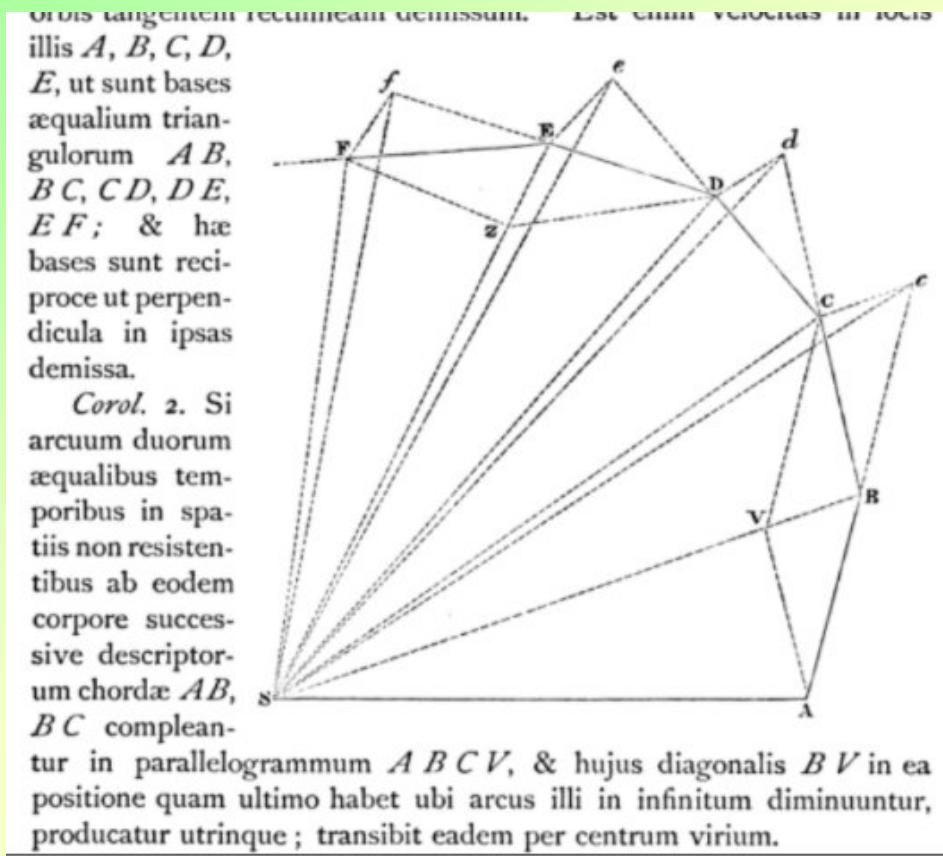
Mutationem motus proportionalem esse vi motrici impressæ, & fieri secundum lineam rectam qua vis illa imprimitur.

COROLLARIUM I.

Corpus viribus conjunctis diagonalem parallelogrammi eodem tempore describere, quo latera separatis.

Si corpus dato tempore, vi sola M in loco A impressa, ferretur uniformiter motu ab A ad B ; & vi sola N in eodem loco impressa, ferretur ab A ad C : compleatur parallelogrammum $ABDC$, & vi utraque feretur corpus illud eodem tempore in diagonali ab A ad D . Nam quoniam vis N agit secundum lineam AC ipsi BD parallelam, hæc vis per legem ii nihil

„Corpus“ maintains its state of „quiet“ or moving uniformly in one direction, as long no forces change its state.


Projectile preserves its motion provided the air resistance makes it retard or the gravity does not change it.

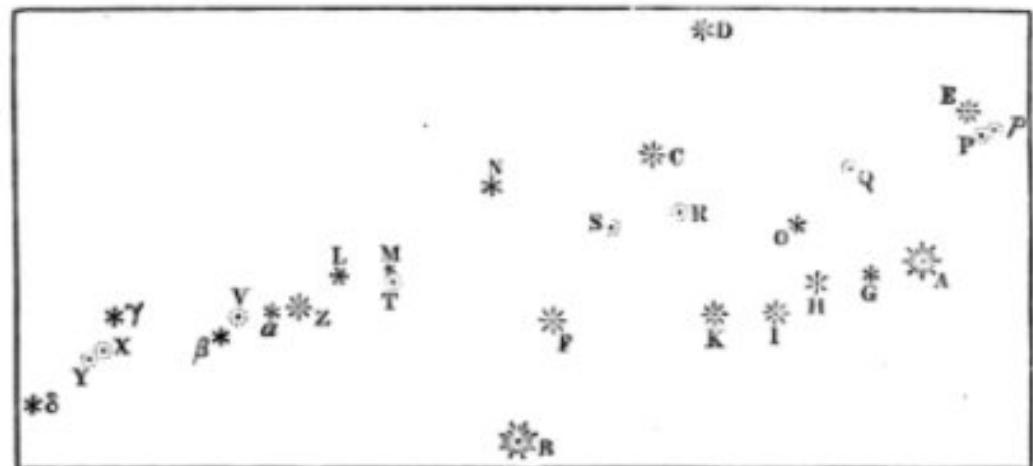
Quite easy to understand.
Why modern school books make it complicated?

Sum of vectors

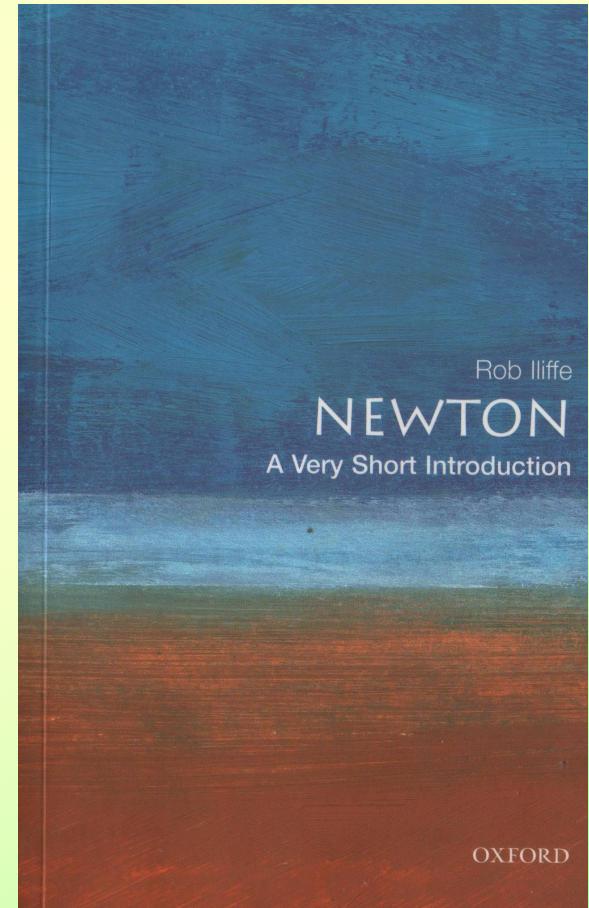
Still in use, but nobody says that it comes from Newton

It is still much „Eucleidian”, i.e. geometrical

He derived centripetal force
via geometrical reasoning.

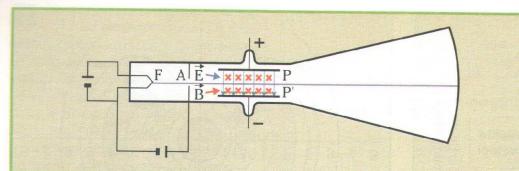

In a similar way Archimedes
evaluated $3 \frac{1}{7} < \pi < 3 \frac{10}{71}$

but also experimental & astronomical

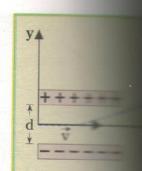

pondera globorum ac tempora cadendi exhibentur in tabula sequente.

GLOBORUM MERCURIO PLENORUM.			GLOBORUM AERE PLENORUM.		
Pondera.	Diametri.	Tempora cadendi.	Pondera.	Diametri.	Tempora cadendi.
908 gran.	0,8 digit.	4"	510 gran.	5,1 digit.	8" $\frac{1}{2}$
983	0,8	4 —	642	5,2	8
866	0,8	4	599	5,1	8
747	0,75	4+	515	5,0	8 $\frac{1}{4}$
808	0,75	4	483	5,0	8 $\frac{1}{2}$
784	0,75	4+	641	5,2	8
•					

$36\frac{1}{2}$, $DI\ 53\frac{1}{4}$, $AK\ 38\frac{1}{2}$, $BK\ 43$, $CK\ 31\frac{1}{2}$, $FK\ 29$, $FB\ 23$, FC


$36\frac{1}{2}$, $AH\ 18\frac{1}{2}$, $DH\ 50\frac{1}{2}$, $BN\ 46\frac{1}{2}$, $CN\ 31\frac{1}{2}$, $BL\ 45\frac{1}{2}$, $NL\ 31\frac{1}{2}$

Concise & objective
(even funny) Newton's
life



Electromagnetism: Italy

Fig. 12 (a sinistra) – Versione moderna del dispositivo di Thomson per la misura della carica specifica degli elettroni. Tra le piastre P e P' esistono un campo elettrico e un campo magnetico ortogonali tra loro.

Fig. 13 (a destra) – Deflessione degli elettroni tra le piastre del dispositivo della figura precedente per effetto del campo elettrico.

per effetto termoionico dovuto al riscaldamento anziché nella scarica in un tubo a gas a bassa pressione (diodi) come nell'apparato usato da Thomson.

Gli elettroni emessi da F sono accelerati, infatti nel vuoto, per mezzo di una differenza di potenziale V tra l'anodo A , che ne lascia passare un fascio stretto, dopo aver attraversato la regione tra due piastre P e P' , colpiscono uno schermo fluorescente lasciandone un puntino luminoso.

Se ora applichiamo alle due piastre P e P' un potenziale V con P positiva rispetto a P' , il fascio viene deviato verso l'alto dal campo elettrico E (fig. 13).

Indicando con L la lunghezza delle piastre e con d la distanza piastre-schermo, si dimostra (→ esempio 3) che la deflessione Y sullo schermo è espresso dalla relazione:

$$Y = \frac{eE}{mv^2} \left(\frac{L^2}{2} + DL \right)$$

in cui e , m e v sono carica, massa e velocità degli elettroni all'ingresso della regione compresa tra le piastre in cui agisce il campo elettrico. Il modulo E del campo elettrico può essere espresso in termini del rapporto V/d tra la d.d.p. e la distanza d tra le piastre. La relazione (10) diventa:

$$Y = \frac{eV}{dmv^2} \left(\frac{L^2}{2} + DL \right)$$

Misurando Y , nella (11) restano ancora tre incognite: e , m e v . Si può perciò ricavare il rapporto e/m , cioè la carica specifica degli elettroni, solo determinando la loro velocità.

Thomson ottiene un'altra equazione applicando la legge di Lorentz al fascio degli elettroni che esce dal campo elettrico: in figura 12 le linee di forza del campo elettrico, rappresentate con croci, hanno il verso entrante.

Tenendo presente il verso della forza esercitata da un campo magnetico su una carica in moto, è facile stabilire che per effetto del campo magnetico sono deviati verso il basso, in verso opposto alla deviazione prodotta dal campo elettrico.

Thomson applicò simultaneamente un campo elettrico e un campo magnetico, regolandone i moduli in modo che gli elettroni passasse indefeso attraverso la regione compresa tra le piastre P e P' e raggiungesse questa condizione se la forza elettrica è uguale a quella magnetica, cioè se, detto B il modulo dell'induzione magnetica, sussiste l'equazione:

$$eE = evB$$

Misurando i campi E e B nelle condizioni di assegnazione, dalla precedente si ottiene:

$$v = \frac{E}{B}$$

This is Thompson's „discovery” of electron i.e. measurement e/m

$$v = \frac{V}{dB}$$

Substituendo questo valore nella (11) e risolvendo rispetto al rapporto e/m si ottiene:

$$\frac{e}{m} = \frac{2V}{d^2(L^2 + 2DL)}$$

ma tutte le grandezze a secondo membro sono misurabili. Thomson misurò il rapporto e/m per gli elettroni dei raggi catodici e trovò un unico valore, indipendente dalla natura del catodio e dal gas residuo nel tubo.

In virtù di questa indipendenza egli pensò che i raggi catodici sono un comune costituente di tutta la materia.

Il valore di Thomson per e/m fu $1,7 \cdot 10^{11}$ coulomb/kg, abbondantemente vicino a quello determinato con misure più recenti, uguale a:

$$(1,758897 \pm 0,000032) \cdot 10^{11} \frac{\text{C}}{\text{kg}}$$

EMPI

In un sistema cartesiano Oxy come in figura, osserviamo che sull'elettrone agisce nella regione del campo elettrico la forza eE , diretta nel verso positivo dell'asse y . L'elettrone perciò ha nella stessa direzione l'accelerazione costante eE/m . Tenendo conto che lungo l'asse x , perpendicolare alle linee di forza del campo elettrico, non agisce alcuna forza, le equazioni parametriche della traiettoria dell'elettrone nella regione del campo elettrico sono:

$$\begin{cases} x = vt \\ y = \frac{1}{2} \frac{eE}{m} t^2 \end{cases}$$

da cui, eliminando t , si ottiene l'equazione cartesiana della traiettoria (parabola):

$$y = \frac{1}{2} \frac{eE}{mv^2} x^2 \quad (*)$$

La deflessione AB dell'elettrone all'uscita dal campo elettrico si ottiene ponendo nel secondo membro della (*) $x = L$. Si ha perciò:

$$AB = \frac{1}{2} \frac{eEL^2}{mv^2} \quad (**)$$

All'esterno del condensatore la traiettoria è la retta tangente alla parabola, il cui coefficiente angolare è la derivata della funzione $y(x)$ espressa dalla (*) e calcolata per $x = L$.

Si ha perciò:

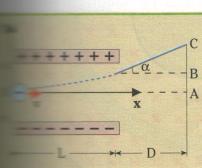
$$\tan \alpha = y'(L)$$

cioè:

$$\tan \alpha = \frac{eEL}{mv^2}$$

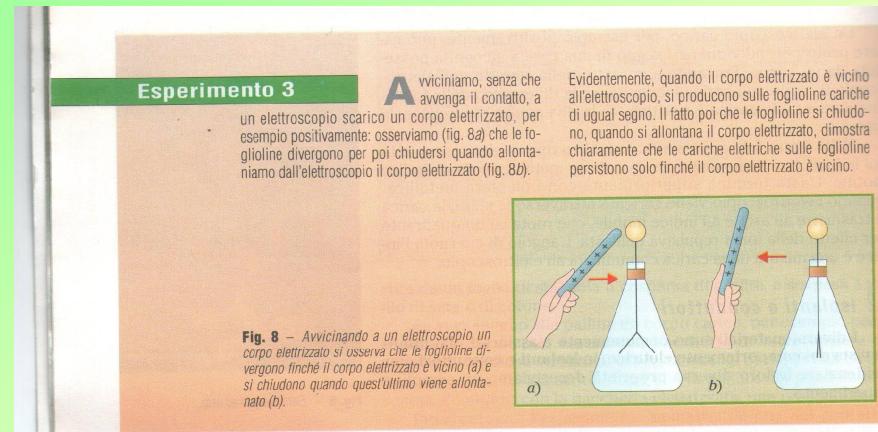
per cui la successiva deflessione BC dell'elettrone è:

$$BC = D \tan \alpha = \frac{eELD}{mv^2} \quad (***)$$


La deflessione totale è $Y = AB + CD$. Tenendo conto delle (*) e (***), si ha perciò:

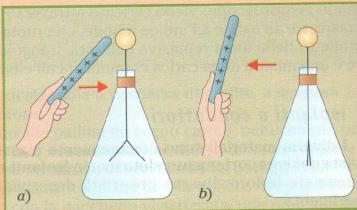
$$Y = \frac{eE}{mv^2} \left(\frac{L^2}{2} + DL \right)$$

che coincide con la (10). Ponendo infine nella precedente $E = V/d$, si ottiene:


$$Y = \frac{eV}{dmv^2} \left(\frac{L^2}{2} + DL \right)$$

che è la relazione (11).

Quite high mathematical skills & high level physical concepts


Electrostatics: Italy

Esperimento 3

Avviciniamo, senza che avvenga il contatto, a un elettroscopio scarico un corpo elettrizzato, per esempio positivamente: osserviamo (fig. 8a) che le foglioline divergono per poi chiudersi quando allontaniamo dall'elettroscopio il corpo elettrizzato (fig. 8b).

Evidentemente, quando il corpo elettrizzato è vicino all'elettroscopio, si producono sulle foglioline cariche di ugual segno. Il fatto poi che le foglioline si chiudono, quando si allontana il corpo elettrizzato, dimostra chiaramente che le cariche elettriche sulle foglioline persistono solo finché il corpo elettrizzato è vicino.

Esperimento 4

Engono usati due cilindri metallici all'estremità esterna dell'asta. Gli elettroscoopi sono disposti come in figura 9a, cioè con i cilindri a contatto in modo da formare un unico conduttore. L'esperimento può anche essere eseguito con due conduttori qualsiasi posti a contatto; l'uso degli elettroscoopi ha il solo scopo di osservare più facilmente le cariche elettriche che si producono nell'esperimento.

Avviciniamo agli elettroscoopi a contatto una bacchetta elettrizzata, per esempio positivamente (fig. 9a); osserviamo che le foglioline di entrambi divergono. Separiamo poi gli elettroscoopi (fig. 9b), mentre il corpo elettrizzato è ancora vicino: le foglioline restano ancora aperte. Infine (fig. 9c) allontaniamo la bacchetta: si può osservare che gli elettroscoopi restano carichi, precisamente quello più vicino all'induttore resta carico negativamente e quello più lontano positivamente.

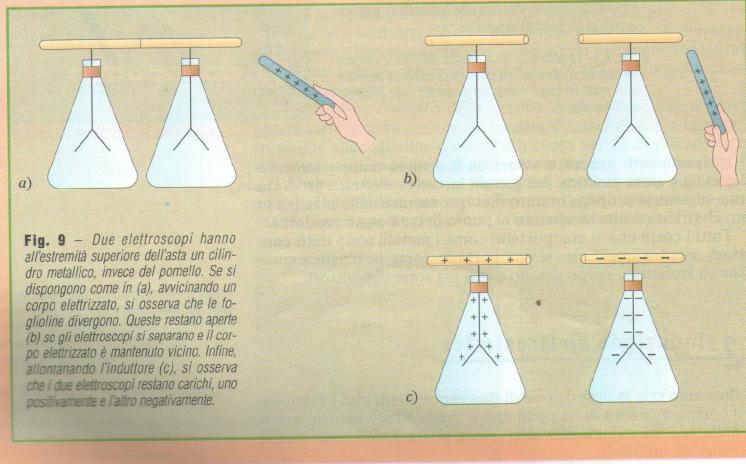


Fig. 8 – Avvicinando a un elettroscopio un corpo elettrizzato si osserva che le foglioline divergono finché il corpo elettrizzato è vicino (a) e si chiudono quando quest'ultimo viene allontanato (b).

Il fenomeno evidenziato nei due esperimenti descritti, cioè il particolare processo di elettrizzazione di un conduttore (l'elettroscopio nel primo esperimento e la coppia di elettroscoopi nel secondo), inizialmente neutro, se gli si avvicina un corpo carico, prende il nome di **induzione elettrostatica**. Il corpo carico (la bacchetta elettrizzata in entrambi gli esperimenti) che produce il fenomeno si chiama **induttore**, mentre il conduttore che lo subisce si chiama **indotto**.

Dagli stessi esperimenti deduciamo che, più in generale, un conduttore *C* (fig. 10) in vicinanza di un corpo *A* carico, per esempio positivamente, subisce il fenomeno dell'induzione elettrostatica, assumendo una carica opposta a quella del corpo *induttore A* nella parte più vicina e una carica dello stesso segno nella parte più lontana.

Le due cariche indotte sono uguali in valore assoluto dal momento che l'indotto *C* ritorna allo stato neutro, quando si allontana l'induttore.

Utilizzando l'induzione elettrostatica si può anche riconoscere il segno della carica posseduta da un corpo, per esempio da un elettroscopio.

Avviciniamo all'elettroscopio una bacchetta carica positivamente: sulle foglioline si produce una carica indotta positiva. Se la divergenza delle foglioline aumenta (fig. 11a), vuol dire che la carica che già si trovava sull'elettroscopio prima dell'induzione era positiva; la carica indotta positiva, infatti, sommandosi con quella preesistente, fa aumentare la carica complessiva e quindi anche la divergenza delle foglioline.

Se invece la divergenza delle foglioline diminuisce (fig. 11b), vuol dire che la carica posseduta dall'elettroscopio prima dell'induzione era negativa; la carica indotta positiva infatti fa diminuire quella complessiva e quindi diminuisce anche la divergenza delle foglioline.

In questo secondo caso la carica positiva indotta, se è sufficientemente grande, può neutralizzare completamente la carica negativa dell'elettroscopio e rimanere su questo in parte non neutralizzata; l'elettroscopio allora prima si scarica e poi si carica positivamente e di conseguenza le foglioline prima si chiudono e poi si aprono di nuovo.

Abbiamo osservato che le cariche elettriche indotte in un conduttore sono opposte, dal momento che il conduttore ritorna allo stato neutro quando si allontana l'induttore.

Il comune valore delle due opposte cariche indotte è generalmente minore della carica dell'induttore; in qualche caso però può essere uguale.

Consideriamo un cilindro metallico, detto **pozzo di Faraday** (dal nome del fisico inglese Michael Faraday, 1791-1867), munito di una piccola apertura e collegato all'asta metallica di un elettroscopio come in figura 12.

Se immaginiamo nell'interno del pozzo, senza toccare le pareti, una sfera carica positivamente per mezzo di un manico isolante, il cilindro e l'asta dell'elettroscopio subiscono l'induzione elettrostatica e di conseguenza le foglioline divergono.

Si osserva sperimentalmente che la divergenza delle foglioline rimane inalterata anche quando la sfera è a contatto con la parete interna del cilindro; da ciò si deduce che la carica indotta positiva, di cui la divergenza delle foglioline è una misura, non subisce alcuna variazione al contatto tra la sfera e il cilindro.

Si osserva anche che la sfera, estratta dal pozzo dopo il contatto, non presenta alcuna carica.

Pertanto la sfera, inizialmente carica, ha perduto nel contatto col cilindro tutta la sua carica neutralizzando la carica indotta negativamente.

Fig. 10 – Se avviciniamo un corpo *A* carico positivamente a un corpo *C* conduttore e inizialmente neutro, il conduttore si carica negativamente nella parte più vicina ad *A* e positivamente in quella più lontana.

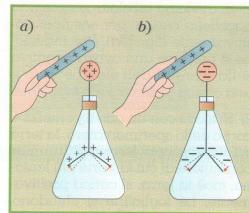


Fig. 11 – Si può riconoscere il segno della carica posseduta da un elettroscopio, avvicinando a questo una bacchetta carica positivamente: se la divergenza delle foglioline aumenta, la carica è positiva (a), mentre se la divergenza diminuisce la carica è negativa (b).

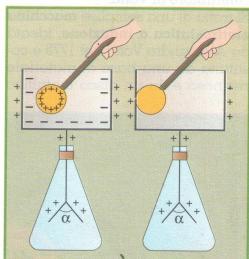
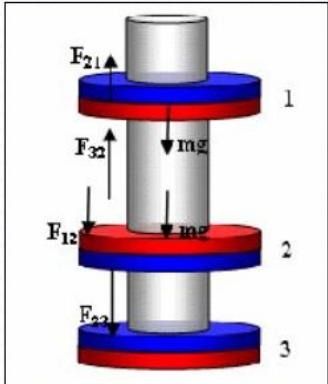


Fig. 12 – Immaginando nell'interno di un cilindro metallico, detto pozzo di Faraday, collegato all'asta di un elettroscopio, una sfera elettrizzata, la divergenza delle foglioline di quest'ultimo è sempre la stessa sia che la sfera non tocchi la parete del pozzo sia che la tocchi.

Too many examples
Nadmiar poglądowości prowadzi
do infantylności (K. Sośnicki)

Magnetostatics: not so easy to explain

Wyd | astr | IOP | Qua | Con | The | Znaj | Divi | Nich | The | Sci | cop | Phys | + | - | X | Niezabezpieczona | dydaktyka.fizyka.umk.pl/zabawki1/index-en.html |


Home | Mechanics | Optics | Thermodynamics | Electricity and Magnetism |

Poland | France | Germany | Italy

PHONE

- [Magnetic sketcher](#)
- [Magnetic star](#)
- [Levitating magnets](#)
- [Twisters in Love](#)
- [Axles](#)
- [Levitron](#)
- [Lemon batteries](#)
- [Intelligence Measurer](#)
- [Volta's tongue](#)
- [Valuable money](#)
- [A crank powered torch](#)

magnet in the middle is mg coming from its own weight and another mg coming from the weight of the uppermost magnet. So this force is double the force acting on the uppermost magnet. The interaction force between magnets changes similarly to Coulomb's force (it is inversely proportional to the square of distance, even if we do not formulate this dependence in such wording). Therefore, the distance between the lowest and middle magnets is approximately smaller by a factor of square root of 2 than the distance between the middle one and the uppermost magnet.

So

$$F_{12} = F_{21}, F_{32} = F_{23},$$
$$F_{13} = F_{31} = 0$$
$$F_{21} - mg = 0; F_{21} = mg;$$
$$F_{12} + mg - F_{32} = 0; F_{32} = mg + F_{12}$$
$$F_{23} = 2F_{21}$$
$$k/r_{23}^2 = 2k/r_{12}^2$$
$$r_{23}/r_{12} = 1/\sqrt{2}$$

The plastic stick is very important: it prevents magnets from sliding apart and sticking together. We say that such a stick is a 2D constraint.

In the [levitation pen](#) the configuration of magnets is more complicated, but the constraints consist in just one reaction point. In the [levitron](#) no constraints are visible, but the vertical orientation of the spinning top is preserved thanks to its rotation.

Wpisz tu wyszukiwane słowa

21:06 04.11.2020

Italy: quite formal, but precise teaching

246 Sorgenti del campo magnetico. Legge di Ampère

se θ è l'angolo formato da $d\mathbf{B}$ con l'asse x . Quando si considerano i contributi $d\mathbf{B}$ di tutti gli elementi ds che formano la spira, le componenti parallele all'asse si sommano, mentre quelle trasversali si elidono a due a due, per la simmetria del problema. Nei punti dell'asse della spira il campo magnetico è dunque parallelo all'asse stesso e concorde a questo se l'orientazione corrisponde a quella della corrente secondo la regola della vite. In totale

$$\mathbf{B} = \oint \frac{\mu_0 i}{4\pi} \frac{\cos\theta}{r^2} ds \mathbf{u}_n = \frac{\mu_0 i}{4\pi} \frac{\cos\theta}{r^2} 2\pi R \mathbf{u}_n ,$$

essendo $\cos\theta$ e r costanti, fissato il punto P . Posto $r^2 = x^2 + R^2$ e $\cos\theta = R/r$, si ottiene

$$\mathbf{B}(x) = \frac{\mu_0 i R^2}{2r^3} \mathbf{u}_n = \frac{\mu_0 i R^2}{2(x^2 + R^2)^{3/2}} \mathbf{u}_n . \quad (8.12)$$

Osserviamo che \mathbf{B} ha lo stesso verso in tutti i punti dell'asse.

Nel centro della spira ($x = 0$) il campo è massimo e vale

$$\mathbf{B}_{\max} = \frac{\mu_0 i}{2R} \mathbf{u}_n ; \quad (8.13)$$

per $x \rightarrow \infty$ il campo tende a zero.

Quando è soddisfatta la condizione $x \gg R$ la (8.12) diventa

$$\mathbf{B}(x) = \frac{\mu_0 i R^2}{2x^3} \mathbf{u}_n = \frac{\mu_0 2i \pi R^2}{4\pi x^3} \mathbf{u}_n = \frac{\mu_0 2 \mathbf{m}}{4\pi r^3} \quad (8.14)$$

se indichiamo con $\mathbf{m} = i \Sigma \mathbf{u}_n = i \pi R^2 \mathbf{u}_n$ il momento magnetico (7.18) della spira.

Anche nel caso della spira circolare ritroviamo il risultato (8.11) già visto nell'esempio 8.1, e cioè che il campo magnetico prodotto dalla spira nei punti dell'asse ha la stessa struttura del campo elettrico prodotto da un dipolo, purché ci si ponga a una distanza molto maggiore delle dimensioni del sistema. L'analogia non è limitata ai punti dell'asse, ma si trova che in generale l'andamento del campo magnetico \mathbf{B} della spira è identico a quello del campo elettrico \mathbf{E} di un dipolo, così che valgono le espressioni (2.61)

$$\mathbf{B} = \frac{\mu_0}{4\pi} \frac{\mathbf{m}}{r^3} (2 \cos\theta \mathbf{u}_r + \sin\theta \mathbf{u}_\theta) \quad (8.15)$$

in cui sono messe in evidenza la componente radiale e la componente trasversa, e (2.62)

$$\mathbf{B} = \frac{\mu_0}{4\pi r^3} [3(\mathbf{m} \cdot \mathbf{u}_r) \mathbf{u}_r - \mathbf{m}] \quad (8.16)$$

in cui il campo \mathbf{B} è dato come somma di una componente radiale e di una componente antiparallela al momento magnetico \mathbf{m} ; il verso di \mathbf{m} è legato a quello della corrente dalla solita convenzione.

Come nel caso del filo rettilineo i risultati possono essere verificati osservando con la limatura di ferro gli spettri magnetici oppure analizzando le linee di campo con un piccolo ago magnetico; si trova confermato pienamente il postulato di equivalenza di Ampère.

Campo sull'asse di una spira circolare

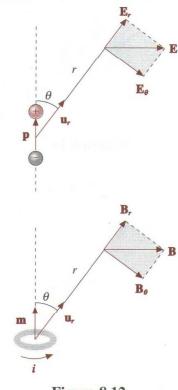


Figura 8.12

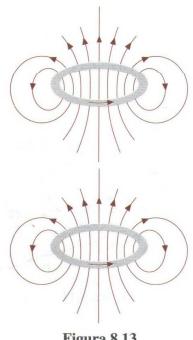


Figura 8.13

Field of a dipole $\sim 1/r^3$

248 Sorgenti del campo magnetico. Legge di Ampère

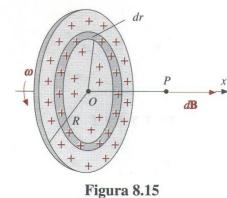


Figura 8.15

Se $x^2 \ll R^2$, come è nel nostro caso, il campo magnetico si può approssimare con l'espressione

$$B = \frac{\mu_0 \omega \sigma R}{2} .$$

Numericamente, essendo $\omega = 2\pi N = 4\pi \cdot 10^2$ rad/s,

$$B = \frac{4\pi \cdot 10^{-7} \cdot 4\pi \cdot 10^2 \cdot 10^4 \cdot 0.2}{2} = 1.58 \cdot 10^{-10} \text{ T} .$$

Questo campo è molto piccolo rispetto al campo magnetico terrestre, che è dell'ordine di 10^{-5} T, per cui la sua rivelazione pone notevoli problemi sperimentali. Tuttavia la misura fu eseguita da Rowland nel 1878 e mise in evidenza per la prima volta che gli effetti magnetici prodotti da un corpo carico in moto non differiscono qualitativamente da quelli delle correnti elettriche.

Solenoide rettilineo

Un solenoide rettilineo è costituito da un filo conduttore avvolto a forma di elica cilindrica di piccolo passo. Sia d la lunghezza del solenoide, R il raggio, N il numero totale di spire, $n = N/d$ il numero di spire per unità di lunghezza; se queste sono abbastanza fitte, così da poterle considerare distribuite con continuità, nel tratto dx ci sono $n dx$ spire. Il valore del campo magnetico in un punto P sull'asse si calcola con la formula (8.12) del campo di una spira percorsa dalla corrente $n dx$:

$$d\mathbf{B} = \frac{\mu_0 i R^2 n}{2r^3} dx ;$$

esso è parallelo all'asse x ed è legato al verso della corrente dalla regola della vite. Introducendo la variabile ϕ come in figura 8.16 si vede che

$$r \sin\phi = R , \quad x - x_0 = -R \operatorname{ctg} \phi , \quad dx = \frac{R d\phi}{\sin^2 \phi} \Rightarrow dB = \frac{\mu_0 n i}{2} \sin\phi d\phi .$$

Il campo magnetico nel punto P si ottiene sommando su tutte le spire ovvero integrando da ϕ_1 a ϕ_2 :

$$B = \frac{\mu_0 n i}{2} \int_{\phi_1}^{\phi_2} \sin\phi d\phi = \frac{\mu_0 n i}{2} (\cos\phi_1 - \cos\phi_2) = \frac{\mu_0 n i}{2} (\cos\phi_1 + \cos\phi_2) ,$$

in cui ϕ_1 e $\phi_2 = \pi - \phi_1$ sono gli angoli sotto cui sono viste da P le spire terminali del solenoide.

Misurando x rispetto al centro del solenoide si ha

$$B(x) = \frac{\mu_0 n i}{2} \left[\frac{d+2x}{\sqrt{(d+2x)^2 + 4R^2}} + \frac{d-2x}{\sqrt{(d-2x)^2 + 4R^2}} \right] . \quad (8.20)$$

Il campo magnetico è massimo al centro del solenoide ($x = 0$), dove vale

$$B_0 = \mu_0 n i \frac{d}{\sqrt{d^2 + 4R^2}} ; \quad (8.21)$$

Field of solenoid is not uniform

Electromagnetism: Belgium/ France

1 LES AIMANTS

Fig. 1. Fragment de pierre magnétique.

Fig. 2. Une boussole ancienne (Chine).

Fig. 3. Quelques aimants artificiels bipolaires.

1.1. Des roches magnétiques

Depuis les temps les plus reculés, les hommes ont remarqué que certaines pierres « magnétiques » ont la propriété de s'attirer entre elles en certaines zones, leur pôles.

Ces corps, appelés **aimants**, sont constitués par de l'oxyde magnétique de fer Fe_3O_4 (fig. 1).

Nature
History

1.2. Un instrument utile : la boussole

Les pierres « magnétiques » possèdent une autre propriété : libres de s'orienter, elles prennent toujours la même direction. Selon certains auteurs, deux siècles avant notre ère, les Chinois ont utilisé ce phénomène pour construire les premières boussoles (fig. 2).

Les boussoles actuelles (une aiguille aimantée mobile sur un pivot vertical au-dessus de la rose des vents) proviennent d'un lent perfectionnement de ces premières boussoles.

1.3. Les aimants artificiels

De nos jours, les aimants artificiels sont en acier ou en alliages et ils ont des formes variées (fig. 3) : barreau droit, aimant en U, aiguille aimantée...

Experiment

1.4. Pôle nord, pôle sud

- Les pôles d'un aimant ne sont pas identiques ; on distingue le **pôle nord** du **pôle sud**. Deux pôles de même nom se repoussent, alors que deux pôles de noms différents s'attirent.
- Il est impossible d'isoler le pôle nord du pôle sud d'un aimant. En effet, chaque fragment obtenu après avoir brisé un aimant en deux se comporte comme un nouvel aimant possédant un pôle nord et un pôle sud (fig. 4).

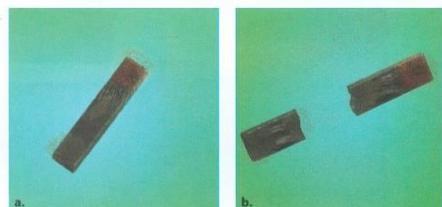


Fig. 4. Expérience de l'aimant brisé : chaque fragment se comporte comme un nouvel aimant.

2 NOTION DE CHAMP MAGNÉTIQUE

2.1. Action sur une aiguille aimantée

expérience

- Poser sur une table une petite aiguille aimantée mobile autour d'un axe fixe vertical. La direction prise par l'aiguille est matérialisée par un fil.
- Approcher successivement de l'aiguille un aimant (fig. 5a), puis un circuit parcouru par un courant : fil ou bobine (fig. 5b).
- Renouveler l'expérience en inversant les pôles de l'aimant, le sens du courant, la forme de l'aimant...

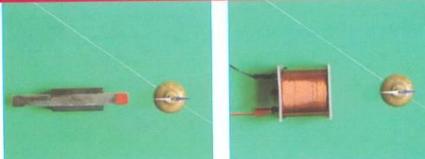
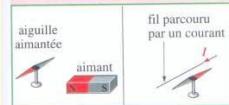
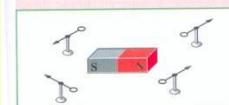



Fig. 5a. Action d'un aimant : l'aiguille change de direction.
Fig. 5b. Action d'un courant électrique.

Observations ▶ L'aiguille aimantée indique spontanément le nord magnétique. Elle change d'orientation quand on approche un aimant (fig. 5a) ou une bobine parcourue par un courant électrique (fig. 5b). Sa nouvelle orientation dépend de nombreux facteurs :


- la position de l'aimant, notamment de ses pôles ;
- la position du circuit, sa forme, le sens et l'intensité du courant.

Interprétation ▶ L'orientation particulière prise par la petite aiguille aimantée met en évidence la modification des propriétés magnétiques au point de l'espace où elle est placée.

L'espace autour des aimants et des circuits électriques parcourus par des courants a des propriétés magnétiques particulières qui peuvent être détectées par une aiguille aimantée.

expérience

- Placer au voisinage d'un aimant plusieurs petites aiguilles aimantées mobiles autour d'un axe fixe vertical (fig. 6).

2.2. L'espace champ magnétique

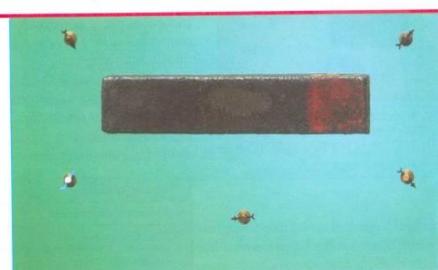


Fig. 6. Quelques aiguilles aimantées disposées autour d'un aimant droit.

Technical applications
Initial notios

- The review of German school book

210 Elektrizitätslehre

Gleiche Magnetpole stoßen sich ab.	Ungleiche Magnetpole ziehen sich an.

Die magnetische Kraftwirkung kann durch andere Körper hindurchgehen. Nur Körper aus Eisen, Nickel und Kobalt, also aus ferromagnetischen Stoffen, können die magnetische Kraftwirkung und damit das magnetische Feld **abschirmen**. Besonders gut zur **magnetischen Abschirmung** eignen sich Körper aus weichmagnetischen Stoffen, z. B. aus **Weicheisen**.

Magnetische Felder und ihre Darstellung

Im Raum um Magnete wirken auf andere Magnete bzw. auf Körper aus ferromagnetischen Stoffen Kräfte. Im Raum um Magnete existiert ein **magnetisches Feld**.

Ein magnetisches Feld ist der Zustand des Raumes um Magnete, in dem auf andere Magnete bzw. Körper aus ferromagnetischen Stoffen Kräfte ausgeübt werden.

Feldlinienbilder magnetischer Felder erhält man, wenn man die Linien nachzeichnet, zu denen sich Eisenfeilspäne im Magnetfeld ordnen. Es wurde festgelegt, dass die Richtung der Feldlinien vom magnetischen Nordpol zum Südpol zeigt.

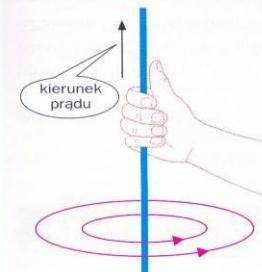
Eisenfeilspäne im magnetischen Feld eines Stabmagneten	Feldlinienbild eines Stabmagneten

Magnetfeld der Erde

Das **Magnetfeld der Erde** ist die Vektoren, die mit einem Kompass auf der Erde angezeigt werden. Ein kleiner Dauermagnet, der auf der Erde steht, ist ein magnetischer Dipol, der die Feldlinien austrahlt.

Die Stärke des magnetischen Feldes ist die **magnetische Feldstärke**. Sie ist definiert als die Kraft, die auf einen magnetischen Probekörper mit einer Fläche von 1 m² ausgeübt wird. Die Einheit der magnetischen Feldstärke ist das **tesla** (T).

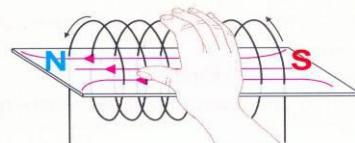
Die magnetische Feldstärke an einer Stelle ist definiert als die Kraft auf einen magnetischen Probekörper mit einer Fläche von 1 m², auf den ein magnetischer Dipol mit einer Polstärke von 1 A m² einwirkt. Formelzeichen: H Einheit: 1 Ampere je Meter


Beim Verschieben eines Probekörpers in einem magnetischen Feld wird Arbeit verrichtet. Dazu muss Energie aufgewandt werden.

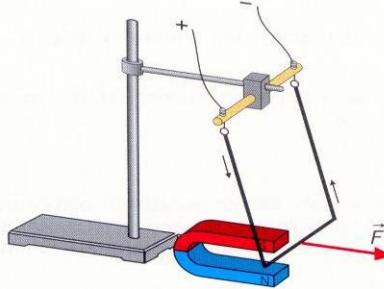
Ein magnetisches Feld besitzt magnetische Energie.

Elektromagnetismus

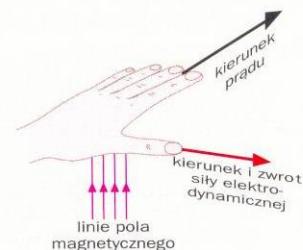
Im Raum um stromdurchflossene Leiter wirken ebenfalls Kräfte auf magnetische Probekörper. Jeder elektrische Leiter ist bei Stromfluss im Raum umgeben. Besonders stark ist das magnetische Feld, wenn ein Leiter als Spule aufgewickelt ist und einen Eisenkern enthält. Man nennt eine solche stromdurchflossene Spule mit Eisenkern auch **Elektromagnet**.


- Description of the shape of magnetic field lines inside and outside the coil.
- The magnetic field is similar to that from a **bar magnet**.
- Where is North magnetic pole students **should know** using the right-hand grip rule learned in **gymnasium few years ago**.
- Next we can read what is an **electromagnet** and where it is **applied in technics**, what is **electrodynamic force** and how to use **Fleming's left-hand rule**.
- All this resumed on two pages. The book shows **schemes**, but not real examples or photos.

Rys. 2.26


bieguny magnetyczne zwojnic można wyznaczyć ze znanych ci z gimnazjum **reguł „prawej ręki”**. Sposób postępowania w każdym przypadku ilustrują rysunki 2.26 i 2.27.

Pole magnetyczne każdego przewodnika z prądem jest tym silniejsze, im większe jest natężenie prądu, który płynie przez przewodnik, a w zwojnicy dodatkowo, im większa jest liczba zwojów. Pole magnetyczne zwojnic staje się jeszcze silniejsze, gdy włożymy do niej żelazny rdzeń. Tak skonstruowane **elektromagnesy** są powszechnie używane w technice, od prostych dzwonków elektrycznych, głośników i przełączników do potężnych dźwigów przenoszących żelazo w hutach.



Rys. 2.27

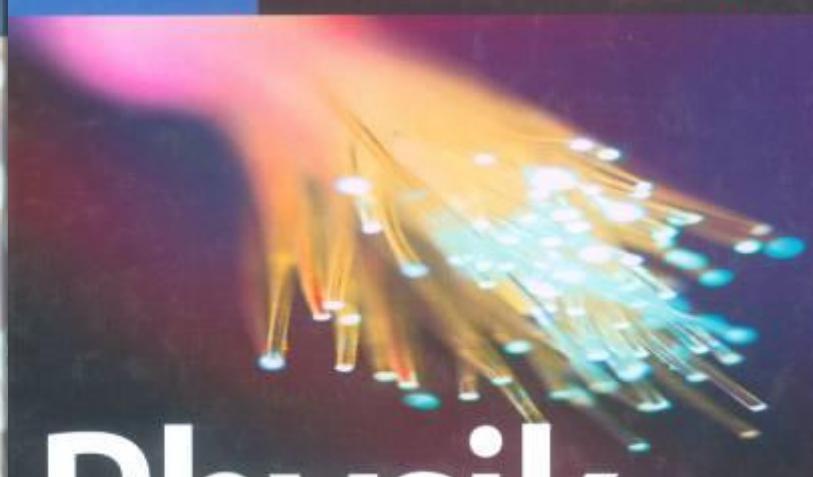
Skoro przewodnik z prądem działa na magnes, jakim jest igła magnetyczna, to zgodnie z trzecią zasadą dynamiki na przewodnik z prądem znajdujący się w polu magnetycznym także powinna działać siła. Istotnie, siła taka działa i nazywa się **siłą elektrodynamiczną** (rys. 2.28). Kierunek siły elektrodynamicznej jest prostopadły do linii pola magnetycznego i do przewodnika, a zwrot zależy

Rys. 2.28

Rys. 2.29

Physik

DUDEN „Basiswissen Schule“ Physik


- Themen und Inhalte aus dem Physikunterricht der Sekundarstufe I aller Schulformen
Physikalische Begriffe, Gesetze, Modelle und Experimente für die Erklärung von Naturphänomenen und deren Anwendung in Technik und Alltag
- Das Buch zum schnellen und gezielten Nachschlagen und Wiederholen in der Schule und zu Hause
- Die CD-ROM mit mehreren Hundert zusätzlichen Artikeln, vielfältigen Suchmöglichkeiten und interaktivem Wissensnetz
- Das Schülerportal www.schuelerlexikon.de für die übergreifende Suche in allen Schulfächern mit aktuellen Beiträgen und Linkempfehlungen

5th to 10th class

ISBN 3-411-71462-X
www.schuelerlexikon.de
9 783411 714629

5. bis 10. Klasse

DUDEN

Physik

Basiswissen Schule

- Buch:** alle wichtigen Unterrichtsinhalte – kurz und knapp
- CD-ROM:** ausführliche Themen mit multimedialen Elementen
- www.schuelerlexikon.de:** Aktualisierung und Erweiterung des Wissens

DUDEN PAETEC Schulbuchverlag

Physics is practical science

208

Elektrizitätslehre

i Die Einheit 1 F ist nach dem englischen Naturforscher MICHAEL FARADAY (1791–1867) benannt.

i Für die Einheiten gilt:
 $1 F = 1 \frac{C}{V} = A \cdot s$

i Bei Luft zwischen den Platten ist die Speicherfähigkeit relativ klein. Bei Verwendung von speziellen keramischen Werkstoffen kann sich die Speicherfähigkeit bei gleicher Plattenfläche und gleichem Abstand um den Faktor 10 ... 10.000 erhöhen.

i Die Dielektrizitätszahl, auch Permittivitätszahl genannt, ist eine Materialkonstante, die die Beeinflussung der Kapazität durch das Dielektrikum angibt. Für Luft gilt: $\epsilon_r = 1$

i Der Anstieg im Q-U-Diagramm ist die Kapazität C des Kondensators.

Die Größe elektrische Kapazität

Jeder Kondensator kann bei einer gegebenen Spannung nur eine bestimmte Ladung aufnehmen. Diese unterschiedliche Speicherfähigkeit für elektrische Ladung wird durch die physikalische Größe elektrische Kapazität angegeben.

Die Kapazität eines Kondensators gibt an, wie viel elektrische Ladung der Kondensator bei einer Spannung von 1 V speichern kann.

Formelzeichen: C
 Einheiten: 1 Farad (1 F)
 $1 \text{ Coulomb je Volt}$ ($1 \frac{C}{V}$)

Teile der Einheit 1 F sind ein Mikrofarad (1 μ F), ein Nanofarad (1 nF) und ein Picofarad (1 pF):

$$1 F = 1000000 \mu F = 1000000000 nF = 1000000000000 pF$$

Die Kapazität der meisten Kondensatoren liegt zwischen 1 μ F und 1 pF.

Berechnen der elektrischen Kapazität

Die Kapazität eines Kondensators ist von seinem Bau abhängig. Bei einem Plattenkondensator ist die Kapazität umso größer, je größer die Flächen der Platten und je kleiner der Abstand der Platten sind. Außerdem ist die Kapazität des Kondensators davon abhängig, welches Dielektrikum sich zwischen den beiden Platten befindet.

Die Kapazität eines Plattenkondensators kann mit folgender Gleichung berechnet werden:

$$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$$

A Flächeninhalt einer Platte
 d Abstand der Platten
 ϵ_0 elektrische Feldkonstante
 ϵ_r Dielektrizitätszahl

Wie viel Ladung ein bestimmter Kondensator speichert, ist davon abhängig, welche Spannung am Kondensator anliegt. Je größer die Spannung ist, desto größer ist die gespeicherte Ladung. Das Verhältnis von gespeicherter Ladung und Spannung ist die Kapazität des Kondensators.

Die Kapazität eines Kondensators kann mit folgender Gleichung berechnet werden:

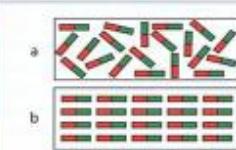
$$C = \frac{Q}{U}$$

Q elektrische Ladung
 U elektrische Spannung

Elektrische und magnetische Felder

209

4.3.2 Das magnetische Feld


Magnete und ihre Wirkungen

Magnete sind Körper, die andere Körper aus Eisen, Nickel oder Kobalt anziehen.

Körper, die diese magnetische Eigenschaft auf Dauer oder über sehr lange Zeit besitzen, nennt man Dauermagnete oder Permanentmagnete. Dauermagnete bestehen ebenfalls aus Eisen, Nickel oder Kobalt. Sie können verschiedene Formen haben.

Dauermagnete unterschiedlicher Form

Unmagnetisiertes (a) und magnetisiertes (b) Eisen im Modell

Körper, die von Magneten angezogen werden, sind auch selbst magnetisierbar.

Diese Eigenschaft von Stoffen aus Eisen, Nickel und Kobalt, den ferromagnetischen Stoffen, ergibt sich aus ihrem Aufbau. Magnetisierbare Stoffe bestehen aus winzigen Bereichen, von denen sich jeder wie ein kleiner Magnet verhält. Im unmagnetisierten Zustand sind diese Elementarmagnete völlig ungeordnet. Der Körper ist nach außen hin unmagnetisch. Unter dem Einfluss eines Magneten können sich diese Elementarmagnete ausrichten. Der Körper wird selbst magnetisch.

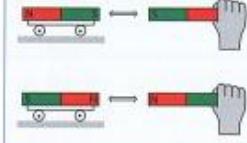
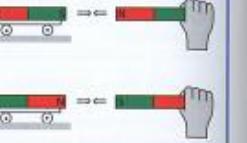
Die Ausrichtung der Elementarmagnete geht verloren, wenn man einen Magneten zu stark erhitzt oder starken Erschütterungen aussetzt. Lassen sich in einem Stoff die Elementarmagnete leicht ausrichten, so bezeichnet man diesen Stoff als magnetisch weich. Stoffe, bei denen die Ausrichtung der Elementarmagnete nur unter dem Einfluss starker Magnete erfolgt und lange Zeit erhalten bleibt, bezeichnet man als magnetisch hart. Aus solchen Stoffen stellt man Permanentmagnete her.

Zwischen Magneten wirken anziehende oder abstoßende Kräfte. Diese Kräfte sind nicht überall gleich, sondern zwischen den Polen der Magnete am größten.

Jeder Magnet hat zwei Pole, den Nordpol und den Südpol.

Auch wenn man einen Magneten zerteilt, hat jeder Teil wieder zwei Pole, einen Nordpol und einen Südpol.

i Permanentmagnete werden heute vor allem aus Legierungen und Oxidwerkstoffen (Barium- und Eisen-oxid) hergestellt.



i „ferro“ kommt von der lateinischen Bezeichnung „Ferrum“ für Eisen. Das chemische Zeichen für Eisen ist deshalb auch Fe.

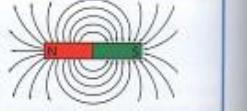
i Oberhalb einer bestimmten stoffabhängigen Temperatur geht die Ausrichtung der Elementarmagnete durch die thermische Bewegung der Gitterbausteine verloren.

i Magnetpole treten immer paarweise auf. Einzelne Magnetpole gibt es in der Natur nicht.

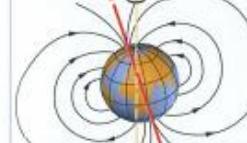
Physics is interdisciplinary science

210 Elektrizitätslehre

Gleiche Magnetpole stoßen sich ab.	Ungleiche Magnetpole ziehen sich an.


Die magnetische Kraftwirkung kann durch andere Körper hindurchgehen. Nur Körper aus Eisen, Nickel und Kobalt, also aus ferromagnetischen Stoffen, können die magnetische Kraftwirkung und damit das magnetische Feld abschirmen. Besonders gut zur magnetischen Abschirmung eignen sich Körper aus weichmagnetischen Stoffen, z. B. aus Welcheisen.

Magnetische Felder und ihre Darstellung


Im Raum um Magnete wirken auf andere Magnete bzw. auf Körper aus ferromagnetischen Stoffen Kräfte. Im Raum um Magnete existiert ein magnetisches Feld.

Ein magnetisches Feld ist der Zustand des Raumes um Magnete, in dem auf andere Magnete bzw. Körper aus ferromagnetischen Stoffen Kräfte ausgeübt werden.

Feldlinienbilder magnetischer Felder erhält man, wenn man die Linien nachzeichnet, zu denen sich Eisenfeilspäne im Magnetfeld ordnen. Es wurde festgelegt, dass die Richtung der Feldlinien vom magnetischen Nordpol zum Südpol zeigt.

Eisenfeilspäne im magnetischen Feld eines Stabmagneten	Feldlinienbild eines Stabmagneten

211 Elektrische und magnetische Felder

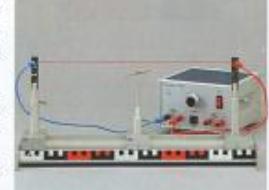
Magnetfeld der Erde	Magnetfeld eines Stabmagneten

Das Magnetfeld der Erde ist die Voraussetzung dafür, dass man sich mit einem Kompass auf der Erde orientieren kann. Die Kompassnadel ist ein kleiner Dauermagnet, der sich im Erdmagnetfeld entsprechend der Feldlinien ausrichtet.

Bei der Orientierung mit dem Kompass ist zu beachten, dass der geographische Nordpol in der Nähe des magnetischen Südpols liegt.

Die Stärke des magnetischen Feldes in einem bestimmten Punkt kann durch die magnetische Feldstärke beschrieben werden. Dabei wird die Größe der Kraft auf einen magnetischen Probekörper, der sich in diesem Punkt befindet, zugrunde gelegt.

Die magnetische Feldstärke an einem Punkt gibt an, wie groß die Kraft auf einen magnetischen Probekörper in diesem Punkt des Feldes ist.
Formelzeichen: H
Einheit: 1 Ampere je Meter ($1 \frac{A}{m}$)


Beim Verschieben eines Probekörpers im Magnetfeld wird mechanische Arbeit verrichtet. Dazu muss Energie des magnetischen Feldes in mechanische Arbeit umgewandelt werden.

Ein magnetisches Feld besitzt magnetische Energie.

Elektromagnetismus

Im Raum um stromdurchflossene Leiter wirken ebenfalls Kräfte auf magnetische Probekörper. Jeder elektrische Leiter ist bei Stromfluss von einem Magnetfeld umgeben. Besonders stark ist das magnetische Feld, wenn ein Leiter als Spule aufgewickelt ist und einen Eisenkern enthält. Man nennt eine solche stromdurchflossene Spule mit Eisenkern auch Elektromagnet.

Die Kraftwirkung zwischen einer Magnettadel und einem stromdurchflossenen Leiter entdeckte HANS CHRISTIAN ØRSTED (1777–1851) zufällig bei Experimenten. Damit wurde der Zusammenhang zwischen Elektrizität und Magnetismus gefunden.

Physics around us

8

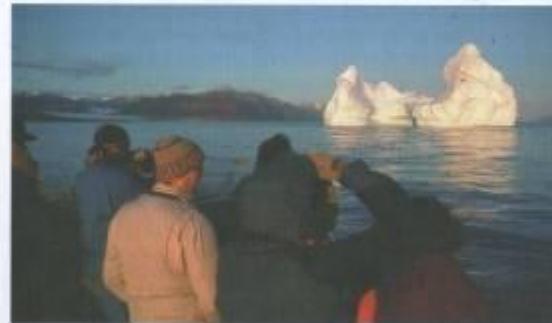
Die Physik – eine Naturwissenschaft

1.1 Gegenstand und Teilgebiete der Physik

1.1.1 Die Naturwissenschaft Physik

Wenn man die Umwelt aufmerksam betrachtet, kann man viele interessante Erscheinungen beobachten. Eine Reihe dieser Erscheinungen sind den Menschen schon lange bekannt. Sie gehören zur Natur, auch ohne den Menschen mit seinen Wissenschaften und der Technik.

Eine solche Naturaerscheinung ist der Regenbogen. Wie entsteht ein Regenbogen? Warum hat ein Regenbogen immer dasselbe Farbband?


Das Feuer hat Menschen schon immer in seinen Bann gezogen und tut es auch heute noch. Woher aber kommen Licht und Wärme des Feuers? Warum geben unterschiedliche Brennmaterialien unterschiedlich viel Licht und Wärme ab? Wie kann ein Feuer entstehen, wie kann es gelöscht werden?

i Das Feuer hat für die Entwicklung der Menschen eine entscheidende Rolle gespielt. Mithilfe des Feuers konnten die Menschen erstmals Fleisch braten, Ton brennen und später Eisen herstellen.

9 Gegenstand und Teilgebiete der Physik

Bei einem Eisberg sieht man nur die Spitze über dem Wasser. Etwa 90 % des Eisberges befinden sich unter Wasser. Wie ist das zu erklären? Warum gehen diese riesigen Eisberge nicht unter?

In einem Tal zwischen hohen Bergen kann man nach kurzer Zeit seinen Ruf als Echo hören. Wie kommt es zu einem Echo bzw. zu einem Mehrfachecho?

Durch Beobachtungen haben die Menschen *Regelmäßigkeiten in der Natur* entdeckt, z. B. den Wechsel von Tages- und Jahreszeiten, den Wechsel der Mondphasen sowie das Auftreten von Sonnen- und Mondfinsternissen. Mithilfe dieser Regelmäßigkeiten und den ermittelten Daten konnten die Menschen z. B. die Termine für Aussaat und Ernte besser bestimmen.

Die Menschen suchten aber auch nach Zusammenhängen zwischen den Erscheinungen, um Erklärungen zu finden und ihre Voraussagen sicherer zu machen. Und sie fanden Zusammenhänge und Erklärungen, auch wenn sich diese später häufig als nicht richtig erwiesen.

9

i Deshalb ist Vorsicht bereits bei der Annäherung von Schiffen an Eisberge geboten, damit das Schiff nicht unter Wasser mit Eis zusammenstößt. So wurde 1912 durch Kollision mit einem Eisberg das damals modernste Passagierschiff der Welt, die „Titanic“, so schwer beschädigt, dass es sank und 1595 Tote zu beklagen waren.

Duden: Great scientists

10

Die Physik – eine Naturwissenschaft

CLAUDIUS PTOLEMAUS lebte von ca. 100 bis ca. 170. Er stellte das geozentrische Weltbild in seinem Werk „Syntaxis mathematice“ (Mathematische Zusammenstellung), arabisch auch „Almagest“ genannt, vor.

Aus den beobachteten Bewegungen der Himmelskörper, vor allem von Sonne, Mond und Sternen, leiteten die Menschen z.B. im Altertum die nahe liegende Vermutung ab, dass sich die Erde im Zentrum der Welt befindet und sich alle Himmelskörper auf kreisförmigen Bahnen um die Erde bewegen.

Gelehrte aus dem antiken Griechenland entwickelten daraus ein ganzes Weltbild über die Bewegungen im Kosmos und auf der Erde.

CLAUDIUS PTOLEMAUS fasste dieses **geozentrische Weltbild** in einem Buch zusammen. Dieses Weltbild war eine großartige Leistung der antiken Wissenschaft, denn man konnte die Bewegung von Sonne und Mond vorausberechnen. So blieb dieses Weltbild Jahrhundertlang erhalten und war doch falsch.

Im Mittelalter konnten Gelehrte wie **KOPERNIKUS** (1473–1543), **GALILEI** (1564–1642), **KEPLER** (1571–1630) und **NEWTON** (1643–1727) auf der Grundlage von Beobachtungen und theoretischen Überlegungen ein wissenschaftliches Weltbild entwickeln, in dem die Sonne im Zentrum unseres Planetensystems steht – das **heliozentrische Weltbild**.


GALILEI war auch der erste Wissenschaftler, der **neue Denk- und Arbeitsweisen** in die Naturwissenschaften einführte. Er suchte nicht nur nach oberflächlichen Erklärungen, die dem Augenschein entsprechen, sondern fragte nach dem Wesentlichen in den Erscheinungen. Vor allem aber zeigte er, dass man zu neuen Erkenntnissen nicht allein durch theoretische Überlegungen kommt, sondern dass man seine Überlegungen mit Experimenten überprüfen muss.

Der italienische Naturwissenschaftler **GALILEO GAULE** lebte von 1564 bis 1642.

Er war nicht nur ein berühmter Mathematiker, sondern beschäftigte sich auch mit verschiedenen physikalischen und astronomischen Problemen.

So begründete **GALILEO** u.a. die klassische Mechanik, fand die Gesetze des freien Falls und entdeckte mit einem selbst gebauten Fernrohr vier Jupitermonde.

Er war einer der Mitbegründer des heliozentrischen Weltbildes.

Gegenstand und Teilgebiete der Physik

11

OTTO VON GUERICKE (1602–1686) war Bürgermeister und Experimentator. Er erfand u. a. die Luftpumpe, das Wasserbarometer und eine Elektrisiermaschine.

Das Wort „Physik“ kommt vom griechischen Wort „*physis*“ und heißt so viel wie „Natur“.

Ein berühmter Experimentator war auch der Magdeburger Bürgermeister **OTTO VON GUERICKE** (1602–1686). Er konnte z.B. bei seinem Experiment mit den Magdeburger Halbkugeln (s. Abb. unten) die Wirkungen des Luftdruckes nachweisen. Damit widerlegte er gleichzeitig eine lange herrschende Auffassung aus der Antike, dass es keinen luftleeren Raum – kein Vakuum – geben könne.

Durch viele Entdeckungen, Beobachtungen und Experimente entwickelte sich in den letzten Jahrhunderten die Physik als eigenständige Naturwissenschaft.

Die Physik ist eine Naturwissenschaft. Sie beschäftigt sich mit den grundlegenden Erscheinungen und Gesetzen in unserer natürlichen Umwelt und ermöglicht die Erklärung und Voraussage vieler Erscheinungen in der Natur.

Sonnen- und Mondfinsternisse sind Naturscheinungen, die von Menschen schon seit Jahrtausenden beobachtet werden. Lange Zeit war aber unklar, wie eine Finsternis zustande kommt. Erst nachdem man erkannt hatte, wie sich Mond und Erde um die Sonne bewegen, konnte man die Finsternisse erklären: Eine Sonnenfinsternis kommt zustande, wenn der Schatten des Mondes auf die Erdoberfläche fällt. Eine Mondfinsternis ist zu beobachten, wenn sich der Mond im Erdschatten befindet.

Erst nach genauer Kenntnis der Bewegungsgesetze war es auch möglich, exakte Voraussagen zu machen. So können wir heute schon voraussagen, dass die nächste totale Sonnenfinsternis in Deutschland erst am 3. September 2081 zu beobachten sein wird.

Branches and applications of physics

14

Die Physik – eine Naturwissenschaft

Die physische Geographie untersucht die Wechselbeziehungen zwischen Lufthülle, Gesteinhülle, Wasserhülle und Lebewesen in der Nähe der Erdoberfläche sowie die Einflüsse der menschlichen Gesellschaft auf die Ausprägung der Landschaften.

Die einzelnen naturwissenschaftlichen Disziplinen untersuchen in der Regel nur Teilbereiche der Natur unter ganz bestimmten Gesichtspunkten. Unsere natürliche Umwelt ist aber ein einheitliches Ganzes. Um Erscheinungen der Natur richtig zu verstehen, müssen deshalb oft Erkenntnisse aus verschiedenen Naturwissenschaften herangezogen werden. Folglich wird in einer naturwissenschaftlichen Disziplin stets versucht, auch die Erkenntnisse anderer Naturwissenschaften zu berücksichtigen und anzuwenden.

In Grenzbereichen zwischen den verschiedenen Naturwissenschaften haben sich neue naturwissenschaftliche Disziplinen wie Biophysik, physikalische Chemie oder Astrophysik entwickelt. Diese Teildisziplinen versuchen ganz gezielte Fragen und Probleme in der einen Naturwissenschaft durch Anwendung von Erkenntnissen aus der anderen Naturwissenschaft zu lösen.

Besonders in der Medizintechnik werden Erkenntnisse aus allen Naturwissenschaften benötigt, um kranke Menschen zu heilen und Gesundheit zu erhalten.

Bei Ultraschalluntersuchungen (linke Abb.) wird von einem Sender Ultraschall ausgesendet, im Körper unterschiedlich reflektiert und von einem Empfänger wieder aufgenommen.

Bei der Entwicklung dieses Verfahrens mussten u. a. die biologischen Wirkungen von Ultraschall berücksichtigt werden.

Für spezielle Herzuntersuchungen nutzt man Herzkatheter. Ein Herzkatheter ist ein dünner Schlauch aus Kunststoff, der durch eine Arterie bis zum Herzen vorgeschoben wird. Durch Einspritzen eines Kontrastmittels werden Verengungen in den Herzkrankgefäßen sichtbar.

Zur Entwicklung und Anwendung sind Erkenntnisse über physikalische, chemische und biologische Eigenschaften und Wirkungen von Katheder und Kontrastmittel notwendig.

Gegenstand und Teilgebiete der Physik

15

1.1.3 Die Teilgebiete der Physik

Traditionell wird die Physik in verschiedene Teilgebiete eingeteilt.

Teilgebiet	Untersuchungsgegenstand	Beispiel
Mechanik	Bewegung von Körpern, Kräfte und ihre Wirkungen, Auftrieb und Schwimmen, Fliegen, Entstehung und Eigenschaften von Schall	
Wärmelehre (Thermodynamik)	Temperatur von Körpern, Zufuhr und Abgabe von Wärme, Aggregatzustände und ihre Änderungen, Wärmeübertragung, Wärmekraftmaschinen	
Elektrizitätslehre (Elektrik)	Eigenschaften von elektrisch geladenen Körpern, Magnetismus, Wirkungen des elektrischen Stromes, Erzeugung und Umformung von Elektroenergie, elektrische Schaltungen und Bauelemente	
Optik	Ausbreitung des Lichtes, Reflexion und Brechung, Bildentstehung an Spiegeln und Linsen, optische Geräte, Farben	
Atom- und Kernphysik	Aufbau von Atomen, Umwandlung von Atomkernen, Eigenschaften radioaktiver Strahlung, Erzeugung von Kernenergie	
Energie	Energieformen, Energieträger, Umwandlung und Übertragung von Energie, Entwertung von Energie, Energietechnik und Umwelt	

Physics vs technology

16

Die Physik – eine Naturwissenschaft

1.1.4. Physik, Technik und Alltag

Die Physik ist auch eine wichtige **Grundlage der Technik**. Dabei werden bewusst physikalische Erkenntnisse genutzt, um Geräte und Anlagen zu bauen, um Energie zweckmäßig zu verwenden, um unser Leben sicherer und angenehmer zu machen.

Wenn du den Lichtschalter betätigst, dann leuchtet die Deckenbeleuchtung im Zimmer auf. Die elektrische Energie wird in Licht und auch in Wärme umgewandelt.

Elektrische Energie wird aber auch für viele andere Zwecke genutzt. Physikalische Erkenntnisse der Elektrizitätslehre haben dies ermöglicht und das Leben der Menschen wesentlich verändert.

Die Physik ist eine wichtige Grundlage der Technik. In der Technik werden physikalische Gesetze vom Menschen genutzt.

Physikalische Erkenntnisse spielen auch in **unserem täglichen Leben** eine wichtige Rolle. Die bewusste Nutzung physikalischer Erkenntnisse erleichtert unser Leben und erhöht unsere Sicherheit. Unkenntnis oder Nichtbeachtung kann zu Unfällen oder Schäden führen.

Wenn man z. B. in einem anfahrenden oder bremsenden Bus steht, muss man sich festhalten, um nicht umzufallen.

Nach dem Baden sollte man die nasse Badebekleidung wechseln, weil man sich sonst leicht erkälten kann. An einem heißen Sommertag trägt man in der Regel leichte und helle Kleidung, um keinen Hitzschlag zu bekommen. Ein Autofahrer weiß, dass sein Bremsweg bei eisglatter Fahrbahn wesentlich größer ist als auf trockener Straße, und erhöht den Sicherheitsabstand. Lärm ist ein Stressfaktor und kann zu Gehörschäden führen. Deshalb sollte man sich mit geeigneten Maßnahmen vor Lärm schützen. Wenn man Schwierigkeiten beim Sehen hat, geht man zum Augenarzt bzw. Optiker und lässt sich eine Brille anfertigen.

17 Gegenstand und Teilgebiete der Physik

In allen diesen Beispielen nutzen wir – bewusst oder unbewusst – physikalische Erkenntnisse.

Die Physik ist eine wichtige Grundlage unseres täglichen Lebens. Die bewusste Nutzung physikalischer Gesetze erleichtert unser Leben und erhöht unsere Sicherheit. Unkenntnis oder Nichtbeachtung physikalischer Gesetze können zu Unfällen oder Schäden führen.

Bei technischen Anwendungen arbeiten häufig Naturwissenschaftler verschiedener Disziplinen zusammen. Oft ist die Natur selbst Vorbild für technische Lösungen.

Im Flugzeugbau wurden und werden viele technische Lösungen dem Vogelflug „abgeguckt“.

Der Wulstbug eines Schiffes hat sein Vorbild bei einem Delfin. Der Mensch ist heute mithilfe der Technik in der Lage, sein Leben nicht nur sicherer und angenehmer zu machen. Er kann auch große Veränderungen in seiner natürlichen Umwelt herbeiführen.

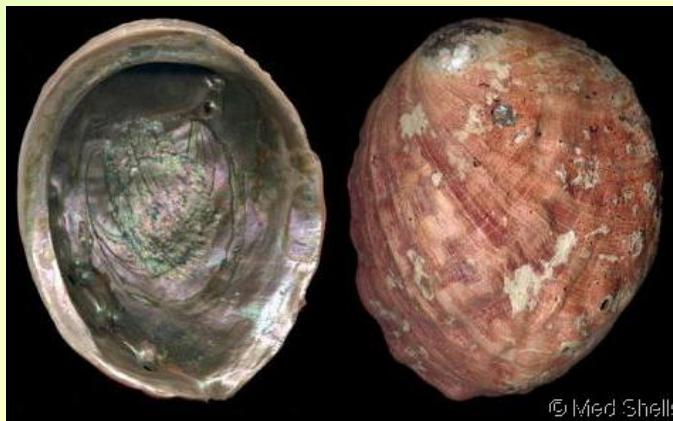
Diese gewaltigen Eingriffe in die Natur können die Lebensbedingungen von Pflanzen, Tieren und Menschen auf der Erde erheblich beeinflussen, ja sogar Lebensgrundlagen zerstören.

Deshalb ist es wichtig, dass bei der Lösung technischer Probleme und bei größeren Eingriffen in unsere natürliche Umwelt stets alle Naturwissenschaften zusammenwirken, um negative Auswirkungen auf die Lebensbedingungen von Pflanzen, Tieren und Menschen zu verhindern und unsere natürliche Umwelt zu erhalten.

Biomaterials

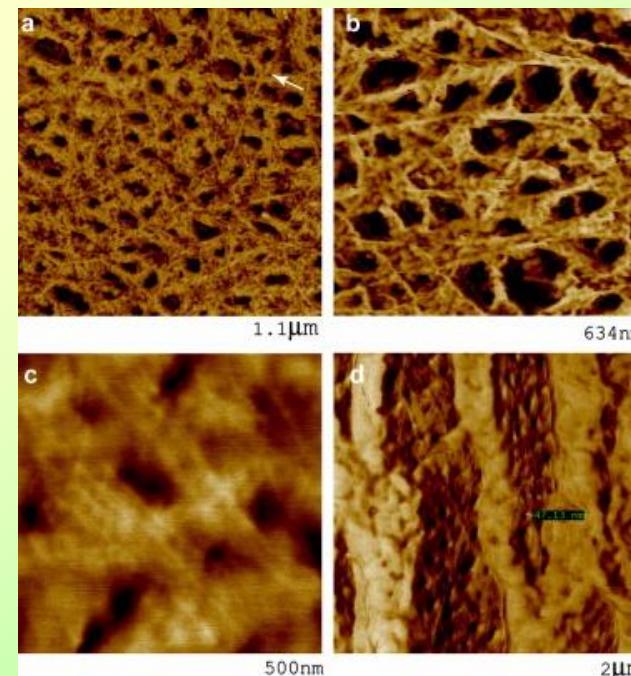
The nanostructural unity of Mollusc shells

Y. Dauphin^{*}


UMR 8148 IDES, bât. 504, Université Paris XI-Orsay, 91405 Orsay cedex, France
* E-mail: yannicke.dauphin@u-psud.fr

ABSTRACT

Calcite and aragonite shell layers of the main classes of Molluscs are composed of monocrystalline units (prisms, tablets, laths or fibres). Scanning electron and atomic force microscopy studies show these units are composed of small round granules with a thin cortex (amorphous calcium carbonate and/or organic matrix). These granules are organo-mineral composites. A comparison of the size and shape of the granules in different taxa (Mollusca, Brachiopoda) suggests a possible relationship with taxonomy and/or phylogeny.



Red abalone

Haliotis rufescens ang. *Red abalone*
pol. *Sluchotka kalifornijska* – do 30 cm

http://www.gastropods.com/5/Shell_965.shtml

Haliothis rufescens

Macromolecular structure of the organic framework of nacre in *Haliothis rufescens*: Implications for growth and mechanical behavior

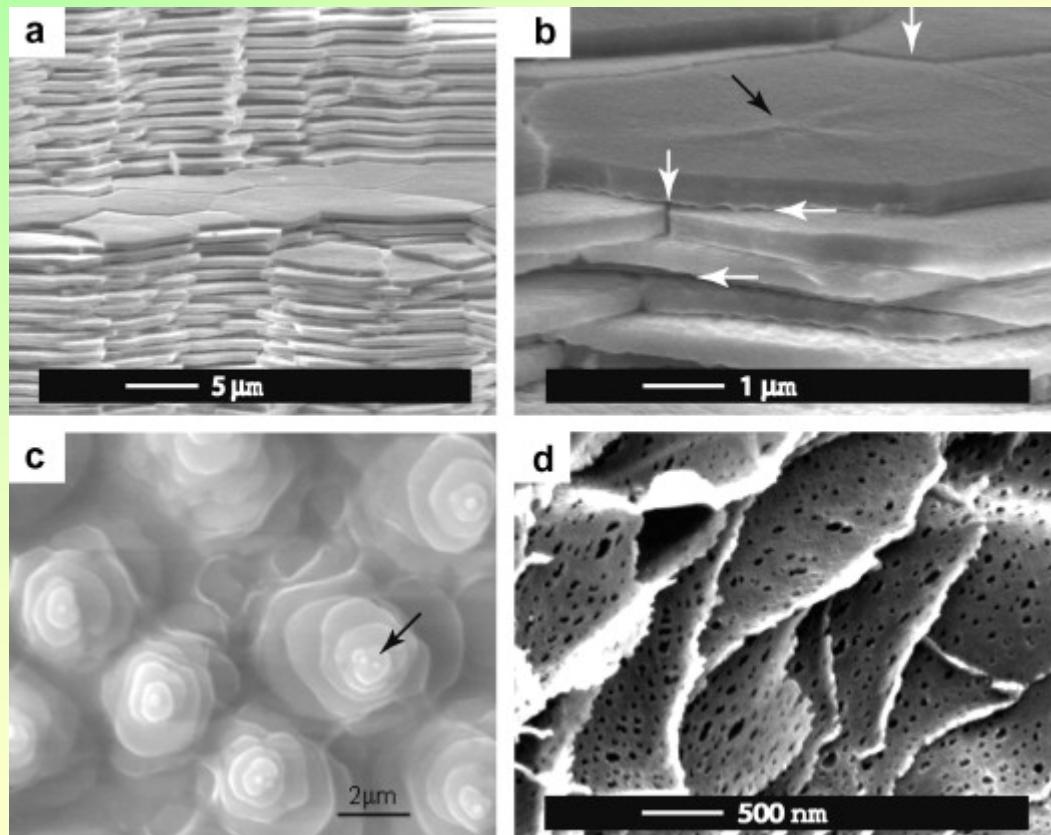
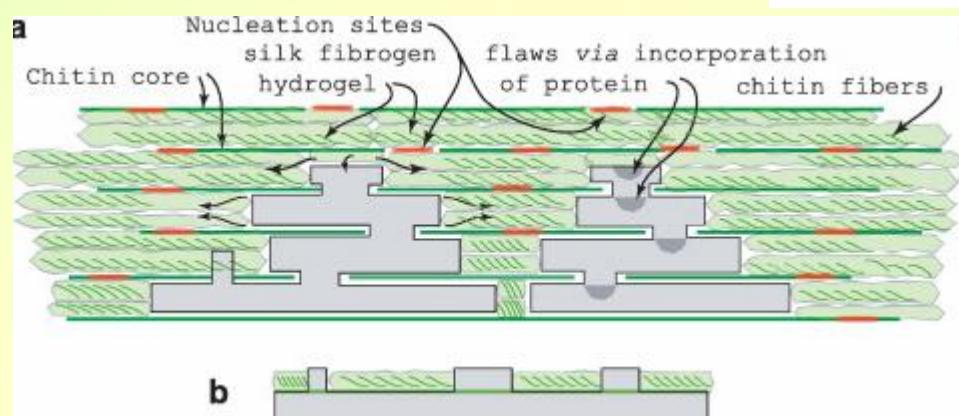
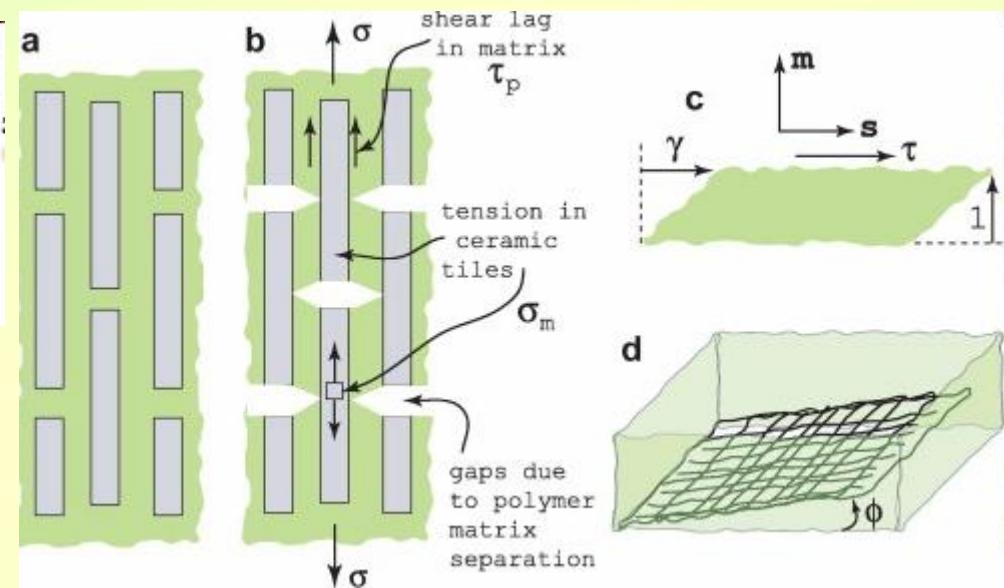
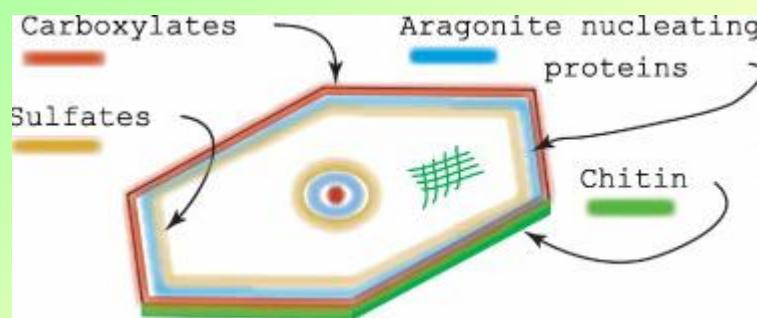


Fig. 1. (a and b) SEM images of fractured nacre from *H. rufescens* illustrating tiles on nearly parallel lamella. The “terrace” consisting of one interlamellar layer of nacre is shown at higher magnification in (b), where the black arrow points to a central region discussed below and referred to in [Mutvei \(1979\)](#). (c) Flat pearls grown on a glass slide inserted into the mantle of a live red abalone (described below). Note the “stack of coins” arrangement with a smaller tile (or tiles) nucleated at the top of each stack. (d) SEM image of a cross section of *H. rufescens* organic matrix, demineralized in EDTA, illustrating individual and apparently porous interlamellar layers

Jiddu Bezara^a, Robert J. Asaro^a, and Marilyn Hawley^b




^a Department of Structural Engineering, University of California, San Diego, CA 92093, USA

^b Materials Science and Technology Division, Los Alamos National Lab., Los Alamos, NM 87545, USA

Journal of Structural Biology

Volume 163, Issue 1, July 2008, Pages 61-75

Haliothis rufescens

Sniders, molluscs

The nanostructural unity of Mollusc shells

Mineralogical Magazine, February 2008, Vol. 72(1), pp. 243–246

Y. DAUPHIN*

UMR 8148 IDES, bât. 504, Université Paris XI-Orsay, 91405 Orsay cedex, France

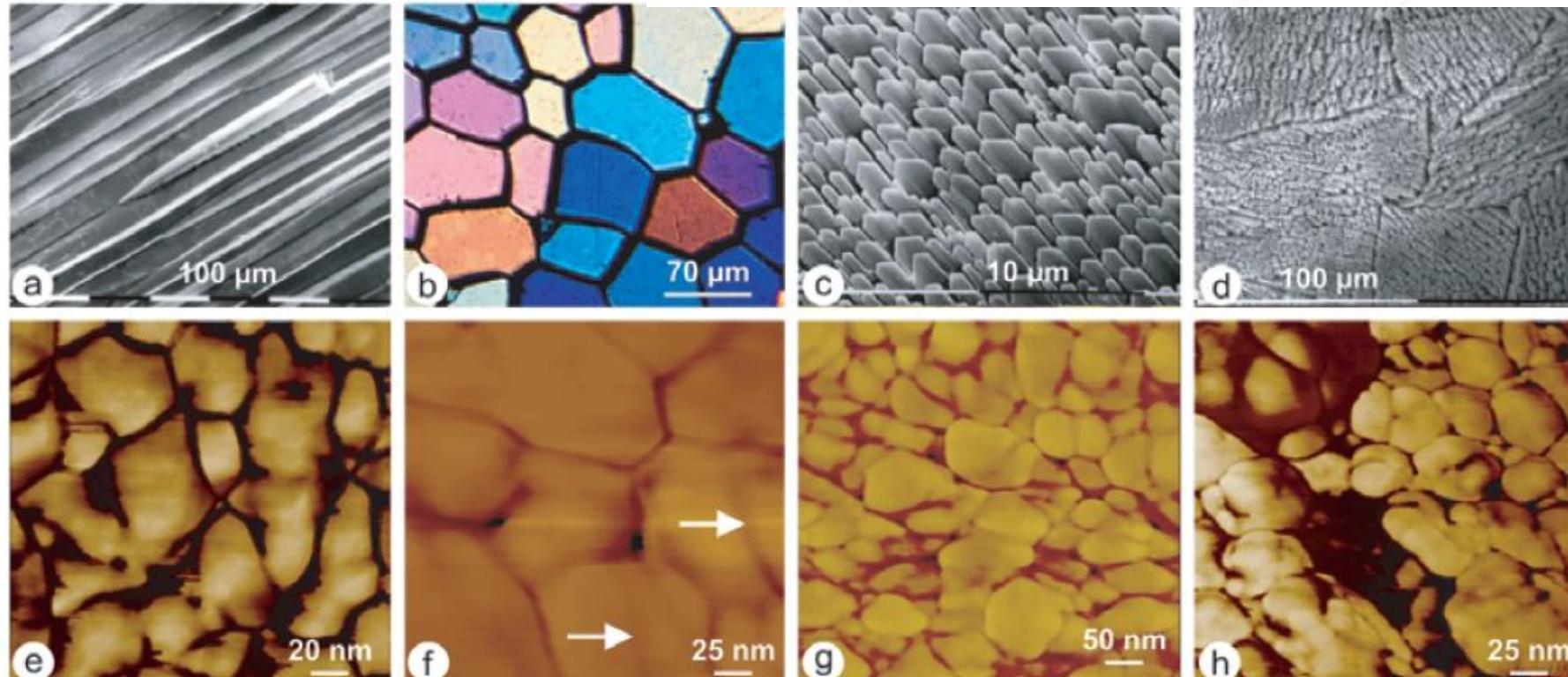


FIG. 1. Calcite structures. (a) Longitudinal fracture in the outer prismatic layer of *Pinna*. Unetched fracture, SEM image. (b) Polarized transverse thin section of the prisms of *Pinna*, showing they are monocrystals. (c) SEM image of the inner foliated layer of *Pecten*. (d) SEM image of the outer prismatic layer of *Haliotis rufescens*. Formic acid 5% for 7 s. (e) Round granules surrounded by a thin dark cortex in the prisms of *Pinna*. AFM phase image. Polished and etched surface, Milli-Q water for 48 h. (f) Granules and cortex in the outer layer of *Concholepas*. AFM phase image. Polished and etched with protease in HEPES buffer for 23 h, at 38°C. (g) Inner surface of the foliated layer of *Pecten*, showing the granules and cortices of the laths. AFM phase image. Na hypochlorite for 3 min. (h) Granules in the middle layer of *Haliotis*. AFM phase image. Polished, fixed and etched surface, glutaraldehyde 25% + acetic acid 2% for 20 s.

Porcelain („china”)

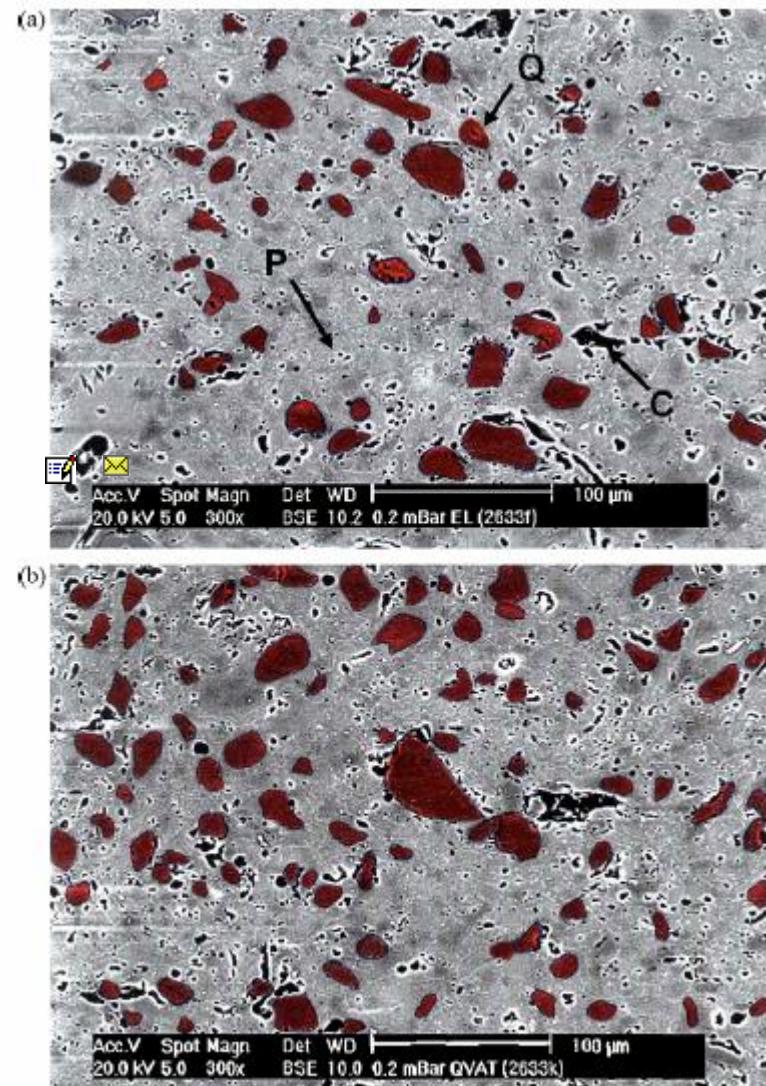


Fig. 9. Microstructural regions quantified by image analysis. (Q) Quartz particles, (P) porosity, (C) chipping. (a) E1 slow cooling and (b) E5 rapid cooling. Magnification 300 \times .

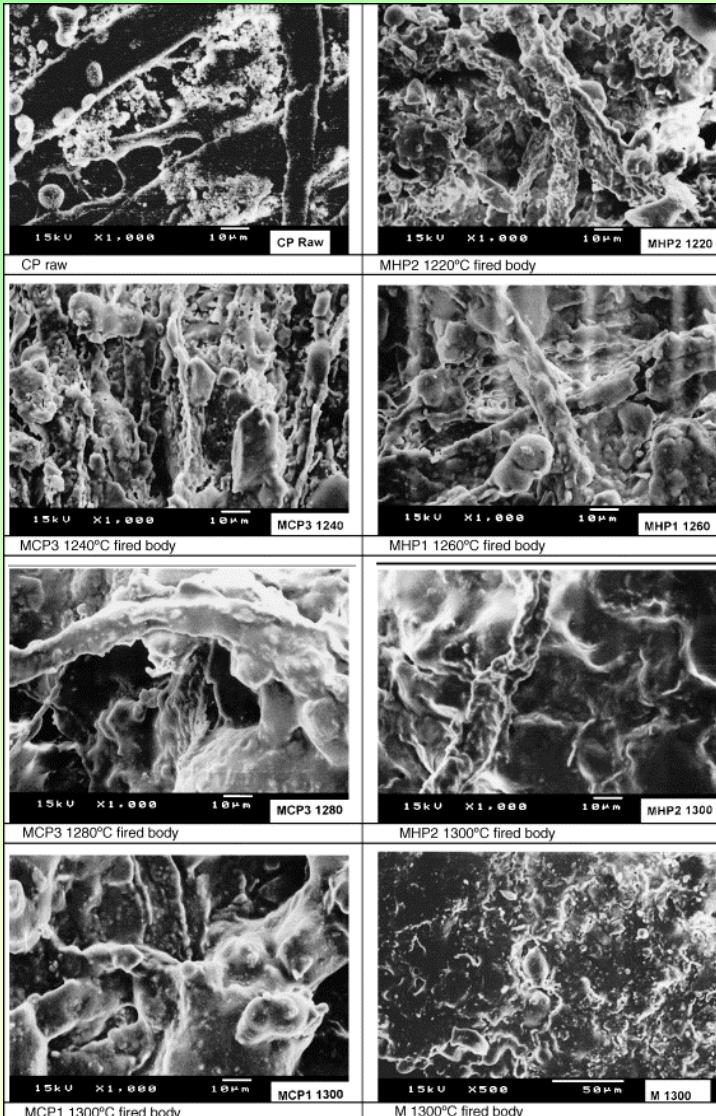
Skład:

kaolin $\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4$ – „Kao-Lin” main = „glue”
clay (kaolin with impurities, like Fe_2O_3)
„rock” (Germ. Feldspat, ang. feldspar,
i.e. ortoklaz $(\text{K}, \text{Na})_2\text{Al}_2\text{O}_3 \cdot 6\text{SiO}_2$
or plagioklaz $\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot \text{SiO}_2$)
- melter

quartz SiO_2 assures glass-like surface

Influence of macroscopic residual stresses on the mechanical behavior and microstructure of porcelain tile –
[Journal of the European Ceramic Society](#)

[Volume 28, Issue 13](#), September 2008, Pages 2463-2469
Agenor De Noni Jr.^a, Dachamir Hotza^b, Vicente Cantavella Soler^c and Enrique Sanchez Vilches^c


^aInstituto Maximiliano Gaidzinski (IMG), 88845-000 Cocal do Sul, SC, Brazil

^bUniversidade Federal de Santa Catarina (UFSC), 88040-900 Florianópolis, SC, Brazil

^cInstituto de Tecnología Cerámica (ITC), 12006 Castellón, Spain

In baked sample see the precipitates of quartz (dark)

Porcelain

Baking allows formation of filaments of Al_2O_3 assuring hard structure

The characterisation of paper composite porcelain in a fired state by XRD and SEM

[Journal of the European Ceramic Society](#)

[Volume 24, Issues 15-16](#), December 2004, Pages 3823-3831

Kim Jeoung-Ah, ,

School of Design and Crafts HDK, Gothenburg University, Box 131, 405 30, Gothenburg, Sweden

Fig. 5. SEM photomicrographs of the base samples surfaces that fired at 1220, 1240, 1260, 1280 and 1300 °C as an elevated temperature.

	SiO_2	Al_2O_3	Fe_2O_3	TiO_2	CaO	P_2O_5	Rb_2O	MgO	Na_2O	K_2O	Loss of ignition	Total
Kaolin	48	36.5	0.68	0.02	0.07	—	—	0.30	0.10	1.65	12.5	99.82
Feldspar	67.2	18.3	0.13	—	0.5	0.14	0.07	< 0.03	5.0	7.7	0.39	< 99.46
Quartz	98.5	0.8	0.025	—	0.4	—	—	0.01	0.2	0.15	0.14	100.225

Dental alloys

Transmission electron microscopic investigation of a Pd–Ag–In–Sn dental alloy Biomaterials Volume 24, Issue 10, May 2003, Pages 1705-1712

W. H. Guo^a, [1](#), W. A. Brantley, ^a, [2](#), W. A. T. Clark^b, P. Monaghana, [2](#) and M. J. Mills^b

a Section of Restorative Dentistry, Prosthodontics and Endodontics, College of Dentistry, The Ohio State University, 305 West 12th Avenue, Mailbox #191, P.O. Box 182357, Columbus, OH 43218-2357, USA

b Department of Materials Science and Engineering, The Ohio State University, Watts Hall, 2041 College Road, Columbus, OH 43210, USA

Popular **palladium–silver dental alloys** for metal-ceramic restorations typically have compositions ranging from about 50–60% Pd and 30–40% Ag, and contain small amounts of low melting point metals, such as **Zn**, **In** and **Sn**, to improve **castability** by increasing the fluidity of the molten alloy; In and Sn also promote **strong bonding to dental porcelain** [[1](#), [2](#), [3](#) and [4](#)].

Phase	Composition (wt%)					Crystal structure		
	Pd	Ag	In	Sn	(Ga + Ru)	Type	<i>a</i> (nm)	<i>c</i> (nm)
Eutectic	69.4 ± 1.4 to	5.6 ± 0.5 to	3.0 ± 1.4 to	12.7 ± 0.9 to	1.3 ± 0.1 to	fct ordered	0.400 ± 0.004 to	0.365 ± 0.007 to
Lamella 1 ^a	71.3 ± 2.1	10.8 ± 0.3	5.0 ± 1.7	16.0 ± 0.7	2.2 ± 0.1		0.410 ± 0.002	0.374 ± 0.003
Eutectic	50.5 ± 0.4 to	39.3 ± 1.0 to	0.0	0.0 to	0.0 to < 1.0	fcc	0.398 ± 0.001	—
Lamella 2 ^a	55.6 ± 0.9	49.5 ± 0.4		5.1 ± 0.4				
Precipitate	68.7 ± 0.9	5.7 ± 0.5	7.7 ± 0.4	16.4 ± 0.7	1.5 ± 0.2	fct	0.407 ± 0.005	0.369 ± 0.006
Matrix (without precipitate)	56.2 ± 0.5	38.5 ± 0.4	0.0	5.2 ± 0.7	0.0	fcc	0.398 ± 0.001	—
Matrix (with precipitate)	62.2 ± 1.0	22.1 ± 1.2	6.1 ± 0.7	9.6 ± 0.5	< 1.0	—	—	—

Table 1. Microstructural phases in as-cast Super Star Pd–Ag alloy

Dual structure: filaments and filling

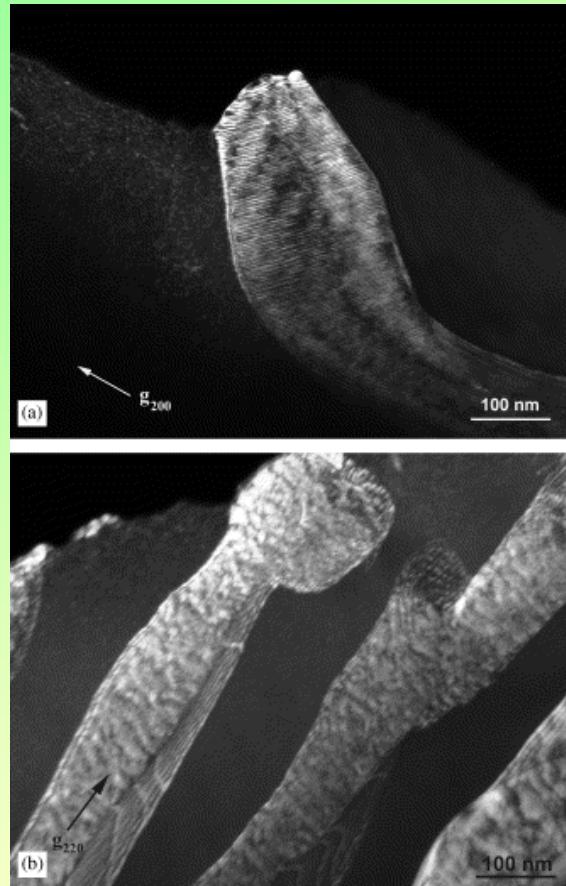


Fig. 1. Dark-field micrographs showing the morphologies of a dendrite (a) and the eutectic structure (b) in as-cast Super Star. For the two-beam condition used to obtain (b), the fct lamellae of the eutectic structure have a bright appearance and the fcc lamellae (i.e., the dark regions between the fct lamellae) are not imaged.

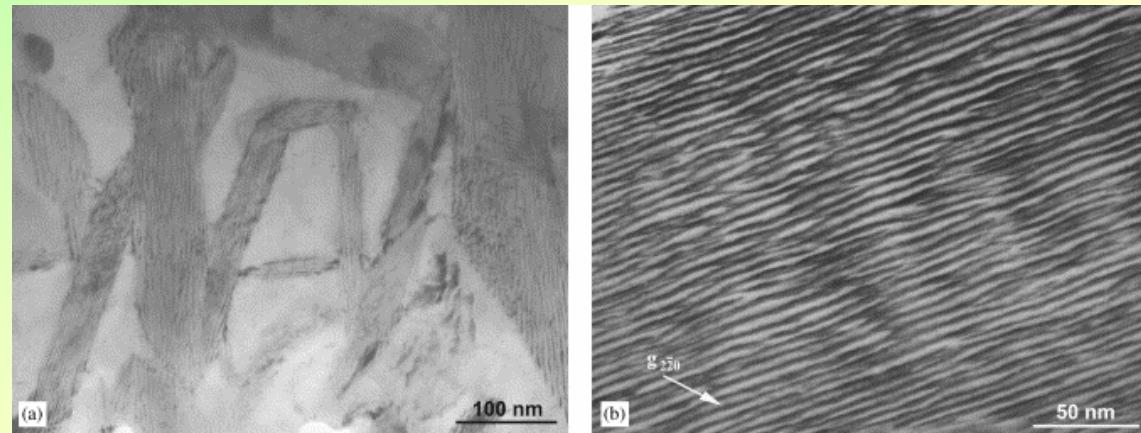


Fig. 2. Morphology of fct precipitates in the fcc palladium solid solution matrix of as-cast S-S. (a) Bright-field micrograph. (b) Higher-magnification bright-field micrograph of the striations within the precipitates.

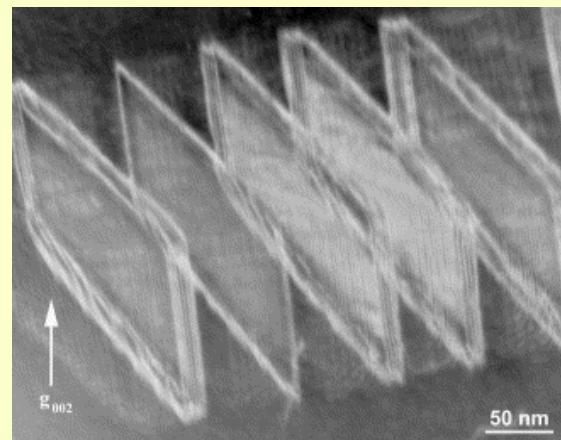
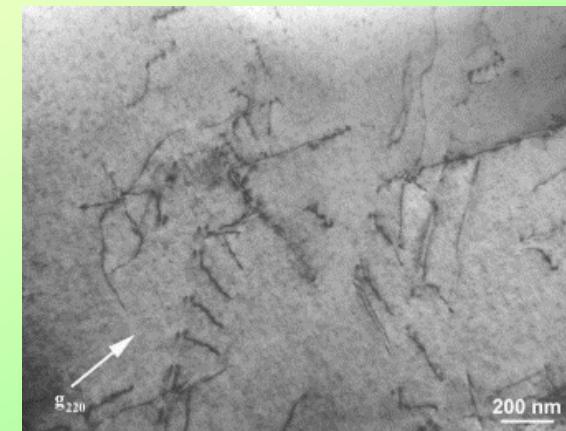



Fig. 3. Dark-field micrograph of heat-treated Super Star, showing discontinuous fct precipitates, which have rectangular platelet morphology. Dislocations are present in both the adjacent fcc palladium solid solution matrix and within the precipitates.

Fig. 4. Bright-field micrograph showing dislocations in the palladium solid solution matrix of Super Star after heat treatment simulating the firing cycles for a dental porcelain.

Physical quantities

20

Die Physik – eine Naturwissenschaft

i In der Wissenschaft, so auch in der Physik, bedient man sich in der Regel der Fachsprache.

i Solche Wörter bezeichnen man auch als Synonyme.

i Bei zusammengesetzten Einheiten wird zwischen den Einheiten meist ein Malpunkt gesetzt, z. B. bei der Einheit Newtonmeter für die mechanische Arbeit: $N \cdot m$. Zulässig ist auch die Schreibweise Nm .

Fachbegriffe knüpfen oft an Alltagsbegriffe an; werden aber dann exakt definiert und schränken meist die Anwendbarkeit des Begriffs ein. Deshalb muss man bei der Anwendung von Begriffen stets beachten, ob es sich um naturwissenschaftliche Fachbegriffe oder um Alltagsbegriffe handelt.

Manchmal wird ein Wort für verschiedene Begriffe benutzt.

i In der Physik versteht man unter **Feld** den Zustand eines Raumes um einen Körper, in dem auf andere Körper Kräfte wirken. In der Biologie ist ein Feld eine Ackerfläche, auf der Kulturpflanzen angebaut werden.

i Eine **Welle** ist in der Physik eine zeitlich und räumlich periodische Änderung einer physikalischen Größe. In der Technik versteht man darunter einen Teil einer Maschine, mit dessen Hilfe Kräfte bzw. Drehmomente übertragen werden.

Zum Teil werden für ein und denselben Begriff auch verschiedene Wörter benutzt.

i Man bezeichnet das Messgerät für die elektrische Stromstärke als Stromstärkemesser, Strommesser oder Ampermeter.

i Die Dauer einer vollen Schwingung wird als **Schwingungsdauer** oder als **Periodendauer** bezeichnet.

Größen in der Physik

Einen Teil naturwissenschaftlicher Fachbegriffe bezeichnet man als **Größen**. Dabei handelt es sich um Begriffe zur Beschreibung messbarer Eigenschaften von Objekten (Körper, Stoffe, Vorgänge usw.).

A Eine Größe beschreibt eine messbare Eigenschaft von Objekten.

Die **Bedeutung** einer Größe gibt an, welche Eigenschaft der Objekte beschrieben wird. Für ein konkretes Objekt kann der Ausprägungsgrad dieser Eigenschaft gemessen und angegeben werden. Man nennt diesen Ausprägungsgrad auch **Wert einer Größe**.

i Das **Volumen** gibt an, wie viel Raum ein Körper einnimmt. Die **Masse** gibt an, wie schwer oder wie leicht und wie träge ein Körper ist.

i Die **Geschwindigkeit** gibt an, wie schnell sich ein Körper bewegt.

Um den Wert einer Größe anzugeben, muss eine **Einheit** festgelegt sein. Der Wert der Größe ist dann das Produkt aus Zahlenwert und Einheit, wobei man den Malpunkt weglässt.

i 5 m^3 bedeutet $5 \cdot 1 \text{ m}^3$
 10 l bedeutet $10 \cdot 1 \text{ l}$

Für jede Größe ist ein **Formelzeichen** (manchmal auch mehrere) als Abkürzung festgelegt (→ S. 22–25). Mithilfe von Formelzeichen kann man naturwissenschaftliche Gesetze schneller und einfacher in mathematischer Form formulieren und anwenden.

Denk- und Arbeitsweisen in der Physik

21

Größe	Temperatur	Dichte
Formelzeichen	ϑ oder T	ρ
Bedeutung	Die Temperatur gibt an, wie warm oder wie kalt ein Körper ist.	Die Dichte gibt an, welche Masse ein Kubikzentimeter eines Stoffes hat.
Einheiten	1 Grad Celsius (1°C) 1 Kelvin (1 K) 1 Grad Fahrenheit (1°F)	1 Gramm je Kubikzentimeter ($1 \frac{\text{g}}{\text{cm}^3}$)
Messgerät	Thermometer	Aräometer
Berechnung	–	$\rho = \frac{m}{V}$

Es gibt zwei Arten von Größen. Einige Größen sind von der Richtung unabhängig. Die messbare Eigenschaft hat nur einen Betrag. Man nennt diese Größen auch **skalare Größen**.

Temperatur, Masse und Dichte sind z. B. skalare Größen.

Andere Größen sind von der Richtung abhängig. Die messbare Eigenschaft hat neben dem Betrag auch eine Richtung. Solche Größen nennt man **gerichtete** oder **vektorielle Größen**. Man kennzeichnet sie mit einem Pfeil über dem Formelzeichen.

i Beispiele für vektorielle Größen sind die Geschwindigkeit \vec{v} und die Kraft \vec{F} .

Bei der **Addition von Größen** muss man beachten, ob es sich um skalare oder vektorielle Größen handelt.

Bei skalaren Größen kann man die Beträge der Größen addieren.

i Eine Masse $m_1 = 100 \text{ g}$ Mehl und $m_2 = 50 \text{ g}$ Zucker werden zusammengeschüttet. Die Gesamtmasse des Gemisches beträgt $m = m_1 + m_2 = 150 \text{ g}$.

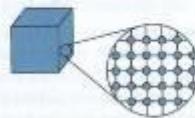
Bei der Addition vektorieller Größen sind die Richtungen der einzelnen Größen zu beachten.

i Ein Schlitten wird von zwei Kindern mit den beiden Kräften $F_1 = 100 \text{ N}$ und $F_2 = 100 \text{ N}$ in unterschiedlicher Richtung gezogen. Die resultierende Gesamtkraft ergibt sich aus einem maßstäblichen Kräfteparallelogramm.

i Für eine Reihe von Anwendungen genügt es, auch bei vektoriellen Größen nur mit den Beträgen (z. B. $|\vec{F}|$ bzw. F) zu rechnen, z. B. wenn verschiedene vektorielle Größen dieselbe Richtung haben.

i Dieses Verfahren nennt man auch **Superpositionsprinzip vektorieller Größen**.

Atomic structure of matter


30

Die Physik – eine Naturwissenschaft

Mit materiellen Modellen kann man auch experimentieren. Mit solchen Modellexperimenten kann man innerhalb der Gültigkeitsgrenzen des jeweiligen Modells Erklärungen bestätigen und Voraussagen treffen.

Das Teilchenmodell beinhaltet folgende Aussagen:

1. Alle Stoffe bestehen aus Teilchen.
2. Die Teilchen befinden sich in ständiger Bewegung.
3. Zwischen den Teilchen wirken Kräfte.

Ein solches ideelles Modell kann auch materiell umgesetzt werden. So kann man sich das Teilchenmodell z. B. als kleine Kugeln vorstellen, die durch Federn miteinander verbunden sind.

Noch stärker vereinfacht lässt es sich durch kleine Teilchen (Murmeln, Erbsen, Reiskörner) darstellen. Dabei bleiben die Kräfte zwischen den Teilchen und die Bewegung der Teilchen unberücksichtigt.

Mit dem Teilchenmodell lässt sich z. B. folgende Erscheinung erklären:

Mischt man 50 ml Alkohol und 50 ml Wasser, so erhält man nicht 100 ml, sondern nur 96 ml Flüssigkeitsgemisch. Der Grund liegt in der unterschiedlichen Größe der Alkohol- und Wasserteilchen.

In einem Modellexperiment mit Erbsen und Reiskörnern kann man dies bestätigen.

Mischt man die Erbsen und die Reiskörner, so ist das Volumen des Gemisches kleiner als die Summe der beiden Ausgangsvolumen. Der Grund liegt in der unterschiedlichen Größe der Teilchen.

Für einen bestimmten Teilbereich der Physik gibt es verschiedene Gesetze sowie unterschiedliche Modelle und Aussagen.

Ein System von Gesetzen, Modellen und Aussagen über einen Teilbereich der Physik bezeichnet man als **Theorie**.

Ein Beispiel für eine geschlossene physikalische Theorie ist die newtonische Mechanik, in der das Verhalten von Körpern unter dem Einfluss von Kräften erfasst wird.

Denk- und Arbeitsweisen in der Physik

31

1.2.3 Erkenntniswege in der Physik

Das Erkennen physikalischer Gesetze

Das Erkennen und Anwenden von Gesetzen in Naturwissenschaft und Technik ist ein äußerst komplexer und in der Regel langwieriger Prozess. Wichtige Naturgesetze und deren Gültigkeitsbedingungen sind in langen, wechselvollen historischen Prozessen entdeckt worden. Diese Prozesse waren oft von Irrtümern und Irrwegen begleitet.

Auch heute ist das Erkennen von Naturgesetzen trotz modernster Experimentier- und Computertechnik ein komplizierter Prozess, bei dem meistens ganze Gruppen von Wissenschaftlern in aller Welt zusammenarbeiten.

Unabhängig vom komplizierten, wechselvollen Weg mit Irrtümern und Irrwegen gibt es immer wieder bestimmte Etappen, die in der Wissenschaft durchschritten werden müssen, um neue Gesetze in der Natur zu erkennen. An einem Beispiel aus der Geschichte der Physik soll dies verarbeitet werden.

Weg der Erkenntnis neuer Gesetze in der Natur

1. In der Natur gibt es interessante, z. T. auffällige Erscheinungen, die beobachtet werden. Diese Erscheinungen veranlassen zur genauen Beobachtung. Durch **Vergleichen** wird versucht, Gemeinsamkeiten, Unterschiede und **Regelmäßigkeiten** in den Erscheinungen zu erkennen. Erscheinungen werden klassifiziert, d.h., Körper, Stoffe und Vorgänge mit gemeinsamen Eigenschaften werden zusammengefasst und **beschrieben**.

Begriffe werden **definiert** und Größen eingeführt.

Im Ergebnis dieser Etappe können Vermutungen aufgestellt werden,

- welche Zusammenhänge in den Erscheinungen wirken und
- unter welchen Bedingungen diese auftreten.

Es werden Fragen gestellt, die es genauer zu untersuchen gilt.

Ein Beispiel aus der Physik

In der Natur kann man beobachten,

- dass sich Balken biegen, wenn sie belastet werden,
- dass sich Seile und Drähte verlängern, wenn man an ihnen zieht,
- dass sich Bäume im Wind verformen.

Genaue Beobachtungen zeigen, dass sich Körper immer dann verformen, wenn auf sie eine Kraft wirkt. Dabei gibt es Körper, die nach Wegfall der Kraft wieder ihre ursprüngliche Form annehmen und solche, die auch nach Wegfall der Kraft verformt bleiben.

Zur Unterscheidung werden die Begriffe **elastische** und **plastische Verformung** verwendet.

Aufgrund genauerer Beobachtungen kann die Vermutung aufgestellt werden,

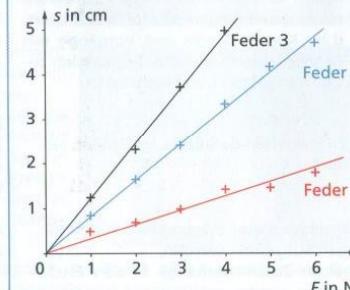
- dass die Verformung bzw. Verlängerung eines Körpers umso größer ist, je größer die einwirkende Kraft ist,
- dass dieser Zusammenhang bei allen elastisch verformten Körpern gilt.

Welcher Zusammenhang existiert zwischen der Verformung bzw. Verlängerung eines elastischen Körpers und der einwirkenden Kraft?

Measurement and interpretation

2. Um die Vermutungen zu prüfen und die Fragen zu beantworten, werden die Erscheinungen noch genauer untersucht. Dazu führt man in der Regel **Experimente** an einer Reihe von einzelnen Objekten durch, um die vermuteten Zusammenhänge exakter zu erfassen und die Wirkungsbedingungen besser zu erkennen. Vorher werden **experimentelle Fragen** gestellt. Es werden Messwerte aufgenommen und mit mathematischen Mitteln ausgewertet (grafisch oder rechnerisch).

Häufig wird versucht, den Zusammenhang zwischen den Größen bzw. Eigenschaften von Objekten mit mathematischen Mitteln, z. B. als Diagramm, als Proportionalität oder als Gleichung, zu beschreiben. Dazu werden die Messwertreihen rechnerisch ausgewertet und die Diagramme interpretiert.


Der Zusammenhang, der zunächst nur an einzelnen Objekten gefunden wurde, wird auf eine ganze Klasse von Objekten **verallgemeinert**. Dabei ist man häufig zunächst auf Vermutungen in Bezug auf die Gültigkeitsbedingungen des Zusammenhangs angewiesen.

In Experimenten an verschiedenen Federn aus unterschiedlichsten Materialien wird folgende **experimentelle Frage** untersucht: Welcher Zusammenhang existiert zwischen der Verlängerung s einer Feder und der an ihr angreifenden Kraft F ?

Feder 1 als Beispiel

F in N	s in cm	$\frac{F}{s}$ in N/cm
0	0	–
1	0,8	1,25
2	1,7	1,18
3	2,4	1,25
4	3,3	1,21
5	4,1	1,22
6	4,7	1,28

Analoge Messwertreihen werden für weitere Federn aufgenommen und können grafisch dargestellt werden.

Aus den Messwertreihen und aus den Diagrammen kann man erkennen:

$$s \sim F \quad \text{oder}$$

$$\frac{F}{s} = \text{konstant} \quad \text{oder}$$

$$F = D \cdot s$$

Das so vermutlich existierende Gesetz muss vor allem hinsichtlich seiner Gültigkeitsbedingungen weiter überprüft werden. Manchmal erscheint es im Zusammenhang mit dem Erkennen neuer Gesetze sinnvoll, auch neue Begriffe zu definieren bzw. Größen einzuführen.

Häufig nutzt man beim Aufstellen bzw. Überprüfen von Vermutungen auch **Modelle** (→ S. 29). Modelle sind zwar Vereinfachungen der Wirklichkeit, sie stimmen aber in wichtigen Eigenschaften mit dem Original überein, in anderen nicht.

Man verallgemeinert den Zusammenhang zu folgendem **Gesetz**:

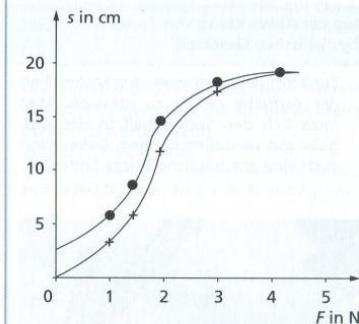
Für alle elastisch verformten Körper gilt unter der Bedingung nicht zu großer Kräfte:

$$F = D \cdot s$$

Man hat festgestellt, dass bei zu großen Kräften zunächst elastisch verformte Körper dann plastisch verformt werden und das Gesetz nicht mehr gilt.

Der Faktor D im gefundenen Gesetz erhält den Namen „**Federkonstante**“ und wird als neue Größe eingeführt. Die Federkonstante ist ein Maß für die Härte einer Feder.

3. Das gefundene Gesetz muss **überprüft** werden. Vor allem muss überprüft werden, ob die vorgenommene Verallgemeinerung des Zusammenhangs tatsächlich für die beschriebene Klasse von Objekten gilt.


Mithilfe des Gesetzes werden neue Erscheinungen bzw. Erkenntnisse vorausgesagt und in Experimenten bzw. in der Praxis überprüft.

Das entdeckte Gesetz wird zur Erklärung von Erscheinungen der Natur genutzt. Es können mit dem Gesetz Größen berechnet werden, die man in der Praxis überprüfen kann.

Unter Nutzung des Gesetzes kann man technische Geräte konstruieren, z. B. Federkraftmesser.

Jede erfolgreiche Anwendung eines Gesetzes in der Praxis ist ein Beleg für die Gültigkeit des gefundenen Gesetzes unter den gegebenen Bedingungen.

Mithilfe des gefundenen Gesetzes wird vorausgesagt, dass auch für die Verlängerung eines Gummibandes $s - F$ gilt. In Experimente kann man jedoch folgende Messwerte aufnehmen und grafisch darstellen:

Für ein Gummiband gilt das oben gefundene Gesetz nicht. Das Gummiband wird auch nicht vollständig elastisch verformt. Die Gültigkeit des gefundenen Gesetzes muss also für Gummibänder ausgeschlossen werden.

Reality → model → mathematical description → solution → interpretation → reality

34 Die Physik – eine Naturwissenschaft

2. Um die Vermutungen zu prüfen und die Fragen zu beantworten, werden die Erscheinungen noch genauer untersucht. Dazu führt man in der Regel Experimente an einem Realen oder einem Modellprojekt. Durch das um die Vermutungen Zusammenhänge exakter zu erfassen und die Wirkungsbedingungen besser zu erkennen. Vorher werden experimentelle Formeln gefunden. Es werden Messwerte aufgenommen mit mathematischen Mitteln ausgewertet (grafisch oder rechnerisch).

Häufig wird versucht, den Zusammenhang zwischen den Größen bzw. Eigenschaften von Objekten mit mathematischen Mitteln, z. B. als Diagramm, als Proportionalität oder als Gleichung, zu beschreiben. Dazu werden die Messwertbereiche rechnerisch ausgewertet und die Diagramme interpretiert.

Feder 1 als Beispiel

F in N	s in cm	$\frac{F}{s}$ in N/cm
0	0	–
1	0,8	1,25
2	1,7	1,18
3	2,4	1,25
4	3,3	1,21
5	4,1	1,22
6	4,7	1,28

Analoge Messwertbereiche werden für weitere Federn aufgenommen und können grafisch dargestellt werden.

35 Denk- und Arbeitsweisen in der Physik

Das so vermutlich existierende Gesetz muss vor allem hinsichtlich seiner Gültigkeitsbedingungen weiter überprüft werden. Manchmal erscheint es im Zusammenhang mit dem Erkennen neuer Gesetze sinnvoll, auch neue Begriffe zu definieren bzw. Größen einzuführen.

Man verallgemeinert den Zusammenhang zu folgendem Gesetz:

$$F = D \cdot s$$

Für alle elastisch verformten Körper gilt unter der Bedingung nicht zu großer Kräfte:

Man feststellt, dass bei zu großen Kräften zunächst elastisch verformte Körper dann plastisch verformt werden und das Gesetz nicht mehr gilt.

Der Faktor D im vorliegenden Gesetz erhält den Namen „Federkonstante“ und wird als neue Größe eingeführt. Die Federkonstante ist ein Maß für die Härte einer Feder.

3. Das gefundene Gesetz muss überprüft werden, ob es tatsächlich Gültigkeit für das gesuchte System hat. Dazu muss überprüft werden, ob die vorgenommene Verallgemeinerung des Zusammenhangs tatsächlich für die beschriebene Klasse von Objekten gilt.

Mithilfe des Gesetzes werden neue Erscheinungen bzw. Erkenntnisse vorausgesagt und in Experimenten bzw. in der Praxis überprüft.

Das entdeckte Gesetz wird zur Erklärung von Erscheinungen der Natur genutzt. Es können mit dem Gesetz Größen berechnet werden, die man in der Praxis überprüfen kann.

Unter Nutzung des Gesetzes kann man technische Geräte konstruieren, z. B. Federkräftermesser.

Jede erfolgreiche Anwendung eines Gesetzes in der Praxis ist ein Beleg für die Gültigkeit des gefundenen Gesetzes unter den gegebenen Bedingungen.

Aufgabe: An einen Kranhaken wird eine Last der Masse 850 kg angehängt und angehoben. Um welche Länge wird das Seil des Kranes gedehnt, wenn seine „Federkonstante“ 3 200 N/cm beträgt?

Analyse:

1. Zunächst geht es darum, den Sachverhalt der Aufgabe genau zu erfassen. Man muss sich den Sachverhalt in der Aufgabe gut vorstellen können. Dabei kann auch eine anschauliche Skizze helfen.

Aufgabe: An einen Kranhaken wird eine Last der Masse 850 kg angehängt und angehoben. Um welche Länge wird das Seil des Kranes gedehnt, wenn seine „Federkonstante“ 3 200 N/cm beträgt?

Analyse:

Denk- und Arbeitsweisen in der Physik

Der Sachverhalt der Aufgabe wird aus physikalischer Sicht vereinfacht. Unwesentliches wird weggelassen. Wesentliche Seiten werden mit Fachbegriffen beschrieben.

Sachverhalt der Aufgabe kann eine verchte, schematisierte Skizze angefertigt en.

Gegebene Größen und Fakten en zusammengestellt.

Wesentliche Seiten des Sachverhalts der aufgabe werden mit physikalischen Gesetzen beschrieben. Dazu muss man geztmäßig wirkende Zusammenhänge und Bedingungen für das Wirken bekannter physikalischer Gesetze im Sachverhalt erkennen.

4. Die physikalischen Gesetze werden angewendet um die Aufgabe zu lösen, z. B. eine gesuchte Größe zu berechnen, eine Erscheinung zu erklären oder vorauszusagen.

Dazu kann man verschiedene Mittel und Verfahren nutzen, z. B.

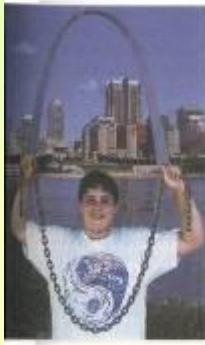
- das Inhaltlich-logische Schließen,
- Verfahren und Regeln der Gleichungslehre,
- grafische Mittel,
- geometrische Konstruktionen,
- experimentelle Mittel.

Ergebnis: Unter der Bedingung, dass sich ein Kranseil elastisch verformt, wird es beim Anhängen und Heben einer Last von 850 kg um 27 mm verlängert.

P. Hewitt „Physics around us”

Rzadz 11: Góra skała 205

Sklepienia lukowe


Projedynczy kamień łatwiej pęka przy rozciąganiu niż skrócaniu. Dachy kamiennych budowli wzroszonych przez starożytnej Egipcjan w czasach budowy piramid złożone są z wielu poziomych warstw bloków skalnych. Warstwy te są mało wytrzymałe na naprężenia związane z ich własnym ciężarem i dlatego są one podparte wieloma kolumnami. Podobnie budowano świątynie w starożytnej Grecji. Dopiero później pojawiły się sklepienia lukowe, dzięki którym liczba kolumn znacznie zmalała.

Rys. 11.11. Typowe połkotne luki z kamienia, które przetrwały wieki.

Rys. 11.12. Poziome bloki kamienne na sklepieniach nie mogą być zbyt długie, gdyż kamienie łatwo pękają przy obciążeniu. Dlatego małe dachy są podparte wieloma kolumnami.

Rys. 11.13. Zarówno luk, jak i lufno związujący lufcuszek, mają kształt krzywej lankuchowej.

P. Hewitt, *Conceptual Physics*, 1967
Wyd. pol. *Fizyka wokół nas*, PWN 2012

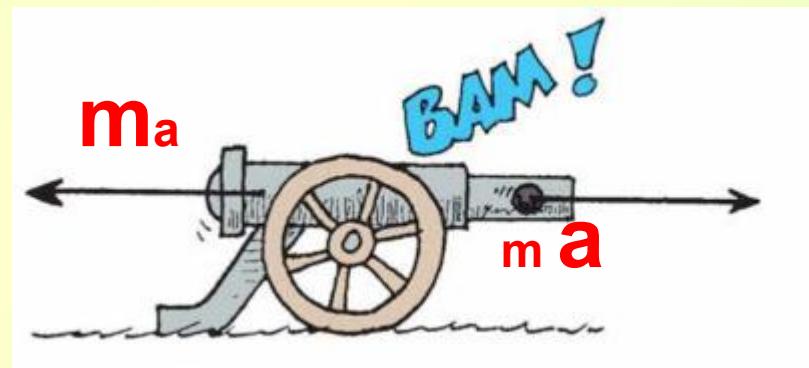
Po drugie, nie wszystkie procesy fizyczne są *odwracalne*. Wymieszanie litra wody cieplej z litrem wody zimnej daje dwa litry wody lepiej, ale ponowne ich rozdzielenie nie jest możliwe. Gorąca szklanka herbaty, stygnąc, ogrzewa (choć bardzo niewiele) powietrze w kuchni, ale letnie powietrze z kuchni nie podgrzeje wody w szklance do wrzenia. Wszelki świat się rozszerza, a przy tym stygnie i nic nie wskazuje na to, aby miał się ponownie skurczyć.

Po trzecie, takie procesy *fizyczne* mogą powodować przemiany jednej substancji w drugą. Pierwiastek chemiczny radon, radioaktywny gaz szlachetny, powstaje z rozpadu promieniotwórczego innego pierwiastka, polonu, przypominającego chemicznie staryk. Fizycy pracujący na wielkich akceleratorach potrafią zamienić jeden metal w drugi, np. aluminium w sód, sód z kolei zamienia się (w procesie rozpadu promieniotwórczego) w gaz, zwany neonem itd. Dzięki nauce to, co było niemożliwe, staje się niesłychanie proste. W tym sensie fizyka współczesna urzeczywistnia marzenia średniowiecznych *alchemików*, zamieniaj jednej substancji w drugą (choć nie zawsze w złoto i bez użycia *kamienia filozoficznego*).

Fot. 1.3. Fizyka zajmuje się procesami. Wytwarzanie prądu elektrycznego w elektrowni geotermicznej, wiatrowej lub w ogniwie słonecznym, to przykłady procesów fizycznych.

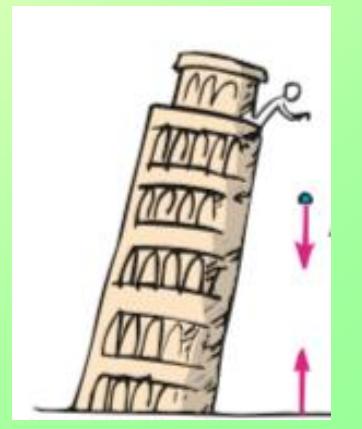
I wreszcie, po czwarte, zaciemnienie Słońca to zjawisko *astronomiczne*, ale pamiętajmy, że ruch Ziemi wynika z prostych praw fizyki. Znając te prawa, przewidywanie zaćmienia nie jest już wiedzą tajemną, ale da się wyliczyć na szkolnym kalkulatorze.

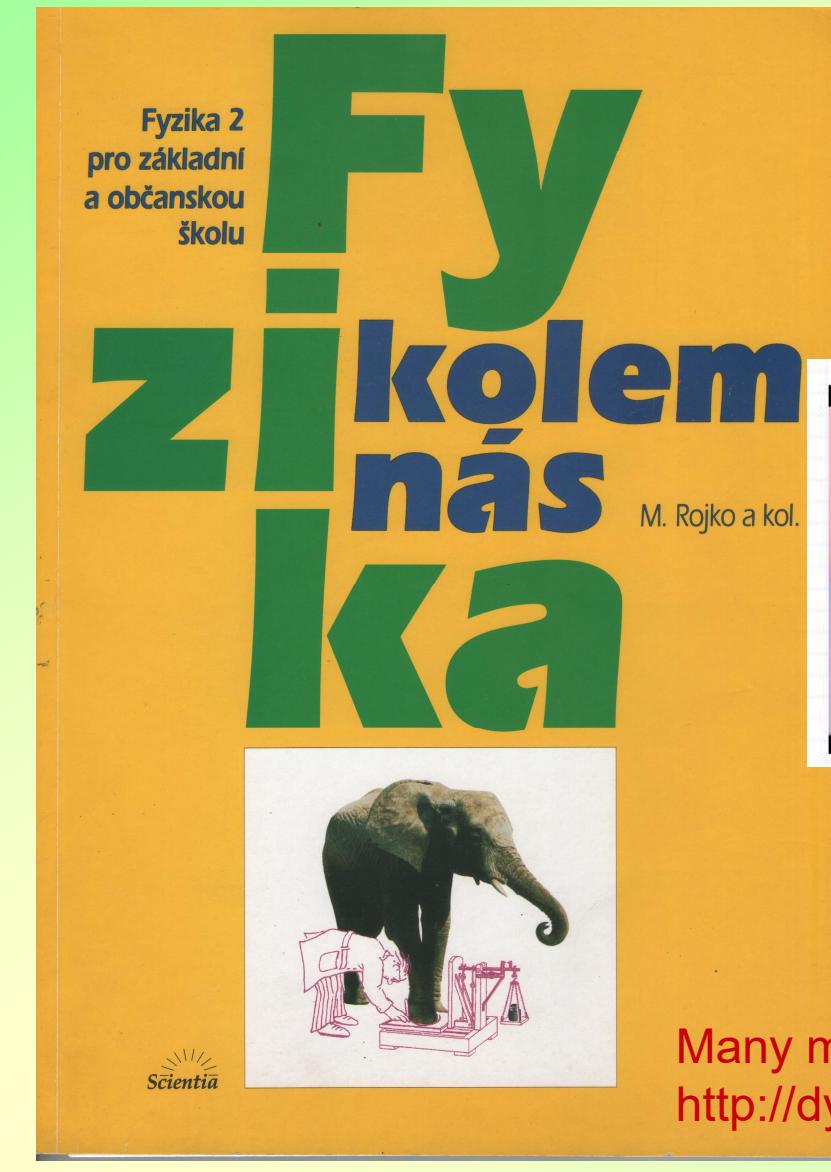
Fizyka współpracuje z innymi naukami przyrodniczymi, jak medycyna i biologia. Transport substancji biologicznych przez błony komórkowe zależy od obecności jonów. Wymiana jonów jest też podstawą działania baterijek elektrycznych i ogniw paliwowych, a te urządzenia zaliczamy do obszaru badań fizyki. Z osiągnięciem zaawansowanej fizyki, jak widać na zdjęciach poniżej, korzysta współczesna medycyna.


Fot. 1.4. Nowoczesne techniki badawcze w medycynie – rezonans magnetyczny, tomografia optyczna (UMK), tomografia pozytonowa (Centrum Onkologii w Bydgoszczy) – to wszysko urządzenia skonstruowane przez fizyków
<http://www.co.bydgoszcz.pl/lecznicze/diagnostyka/zaklad-medyczny-nuklearnej/>
<http://www.medicowr.com/pl/pl/uspial/587/18-kazalowy-rezonans-magnetyczny.htm>

G. Karwasz, M. Sadowska, K. Rochowicz
Toruński poręcznik do fizyki, UMK 2010

II (and III) Law of Newton


Podczas zderzenia samochodu z ciężarówką siły ich wzajemnego oddziaływania są jednakowe. Czy uszkodzenia są takie same? @ P.G. Hewitt, *Fizyka wśród nas*

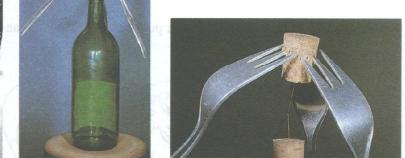

Siła odrzutu armaty jest taka sama jak siła wywierana na pocisk. Dlaczego zatem pocisk ma większe przyspieszenie? @ P.G. Hewitt, *Fizyka wśród nas*

$$m_a = m a$$

- AKCJA – REAKCJA PRZY różnych MASACH: deskorolki?

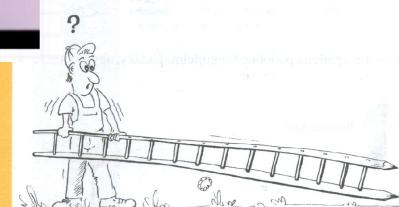
Fyzika around us

Many more on:
<http://dydaktyka.fizyka.umk.pl/zabawki1/index-en.html>


18. Těžiště a rovnováha

Cílové poznatky
a dovednosti: Umět
načít těžiště předmětu
pomoci zavěšování.
Předmět se překlopí
v okamžiku, kdy se
těžiště dostane za
svislou procházející
překlápací hranou.

Některé kousky k


umění využívají
těžiště a rovnováhu
výhodně. Například
výrobci kvalitních
dřevěných hraček
vyrábějí kousky, když
se těžiště dostane
za svislou procházející
překlápací hranou.

I tohle vypadá dost neskutečně.
Můžete si to ale sami vyzkoušet

Kde musí žíšník podepírat táč, aby nespadl?

