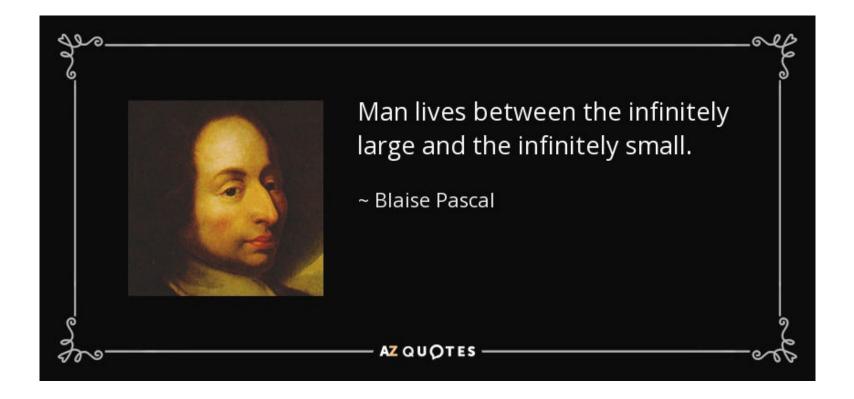
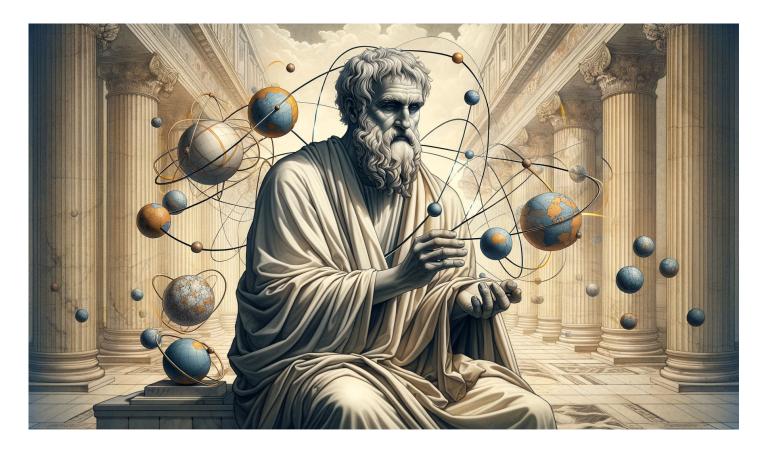


Materials design from first principles: minimizing energy

Igor Di Marco


Nicolaus Copernicus University, Toruń, Poland Uppsala University, Sweden

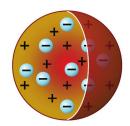

Introduction

Humanity's interest in extreme phenomena

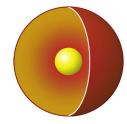
Introduction

Democritus and the rise of the atomistic model

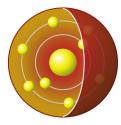
from academichelp.net


A long journey towards our current understanding

An atom can be modeled as a nucleus with a system of interacting electrons


Atom model

Dalton (1803)


Pudding atom model

Thomson (1904)

Planetary atom model

Rutherford (1911)

Orbital atom model

Bohr (1913)

Quantum mechanical atom model

Schrödinger (1926)

Energy Encyclopedia.com

A revolutionary theory that escapes human intuition

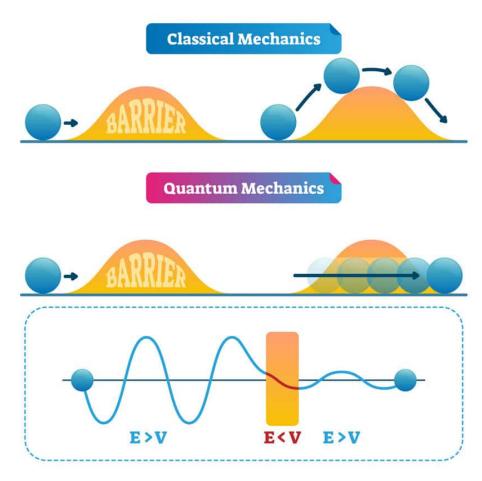


Image Courtesy: normaals/Getty Images

Wave-particle duality

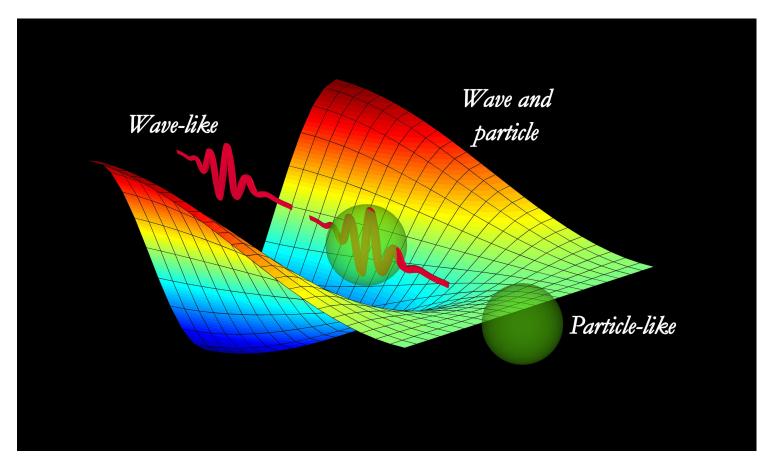


Image credit: S. Tanzilli, CNRS

Wanted! But dead or alive?

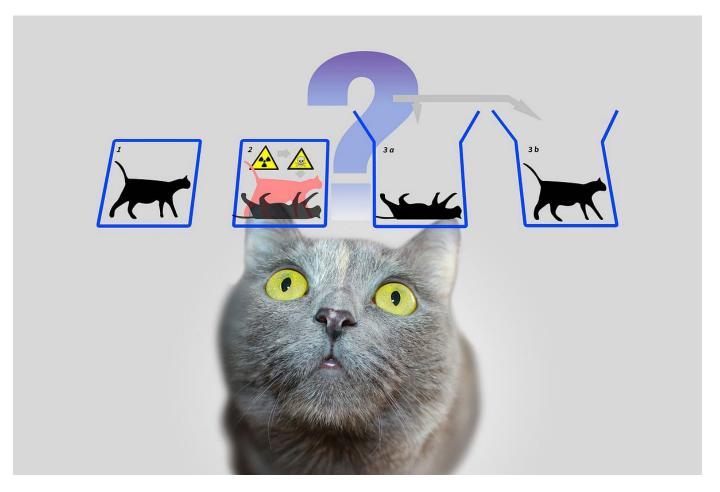
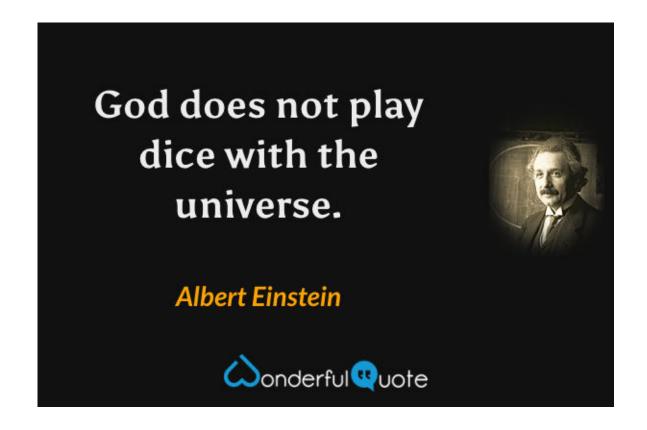
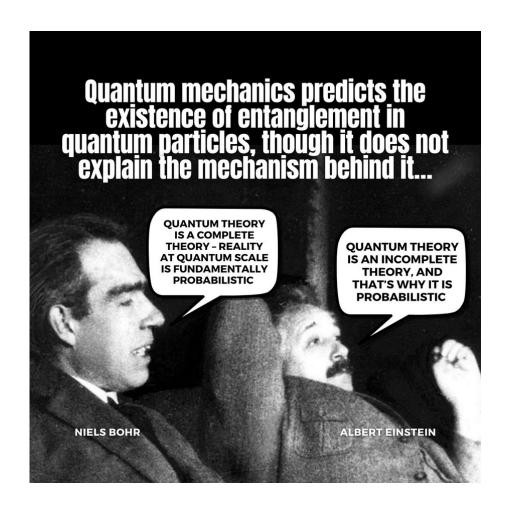
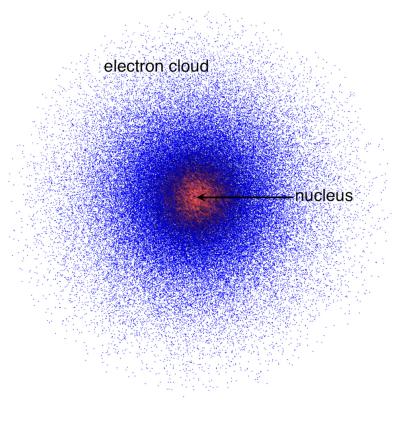




Image by Gerd Altmann, via Pixabay

The philosophical problems of a probabilistic theory

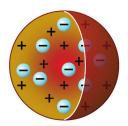


A solution that seemed far from complete (and still does)

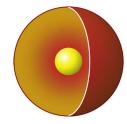
The concept of electronic cloud

The electrons have a probability to be located in a given region around the nucleus

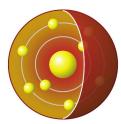
from cosmosatyourdoorstep.com


The end of a very long journey

An atom can be modeled as a nucleus with a system of interacting electrons


Atom model

Dalton (1803)


Pudding atom model

Thomson (1904)

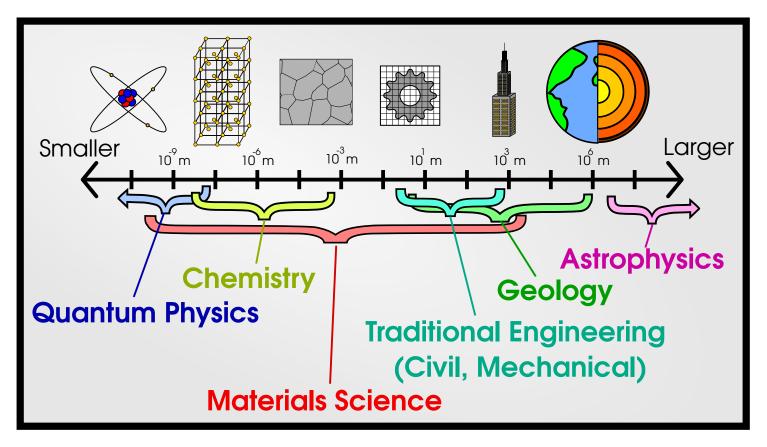
Planetary atom model

Rutherford (1911)

Orbital atom model

Bohr (1913)

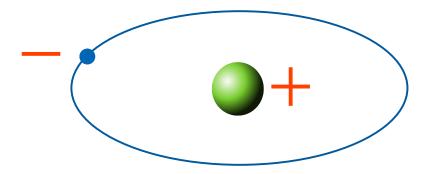
Quantum mechanical atom model


Schrödinger (1926)

Energy Encyclopedia.com

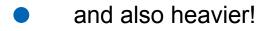
An atom is not the final indivisible component but remains still important

Can we go from small to big length scales?

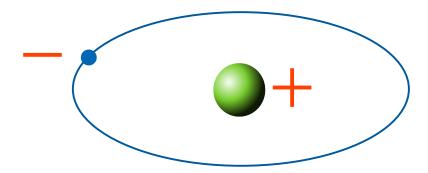

What if had infinite mathematical or computational power?

from msestudent.com

The rules of the game: the atomic model


An atom can be modeled as a nucleus with a system of interacting electrons

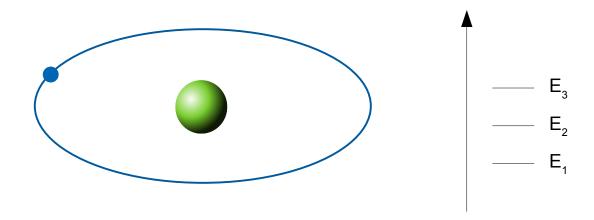
We must "simply" solve the Schrodinger equation of electrons and nucleus


are much bigger than

As in classical mechanics, the electrons can be decoupled

The rules of the game: the atomic model

An atom can be modeled as a nucleus with a system of interacting electrons

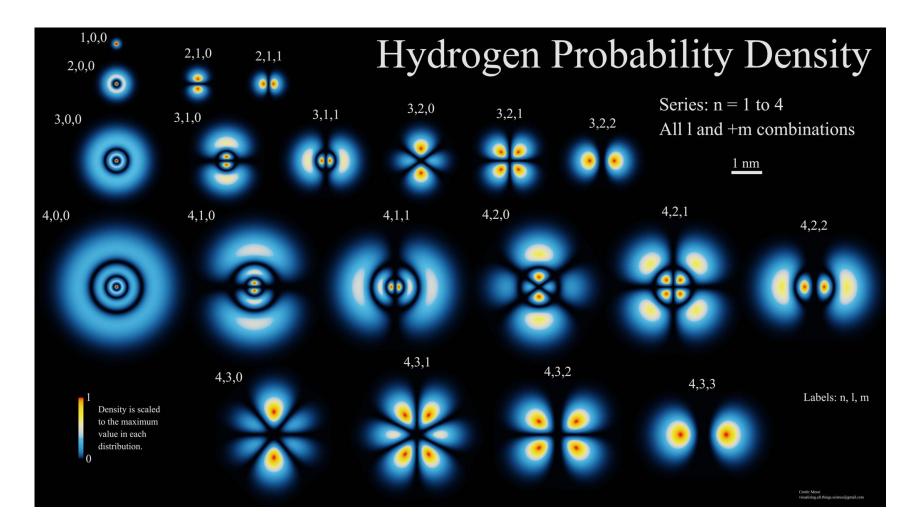

We must "simply" solve the Schrodinger equation of electrons and nucleus Decoupling the nucleus, we are left with the equation for electrons only:

$$\left[T_e + V_{ne} + V_{ee}\right]\psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = E\psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$

The crucial part is the electronic wavefunction ψ

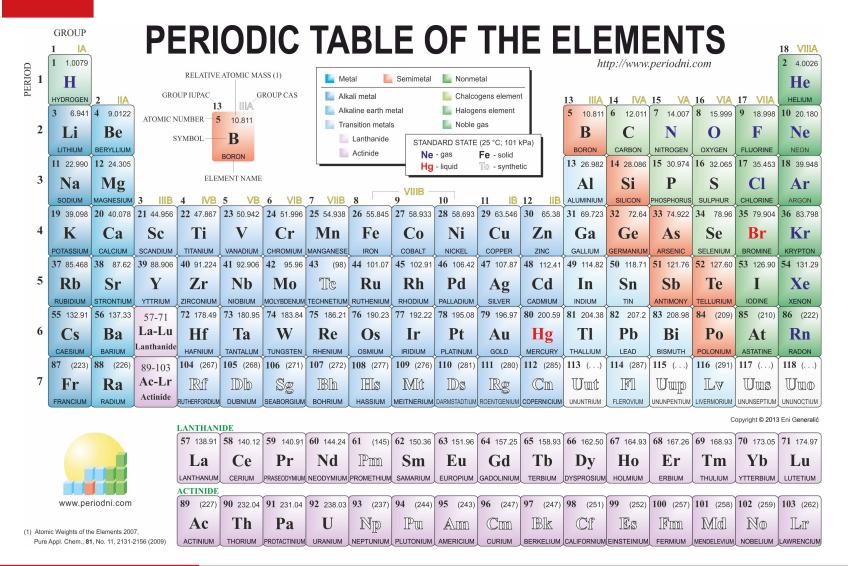
The rules of the game: the atomic model

An atom can be modeled as a nucleus with a system of interacting electrons The Schrodinger equation for the electrons is exactly or numerically solvable

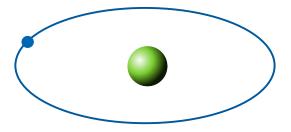

The electrons can occupy a set of discrete energy levels (bound states)

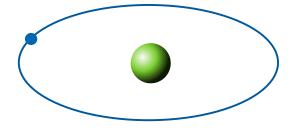
Electronic shells:

1s


2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f ...

The only available analytical solution!

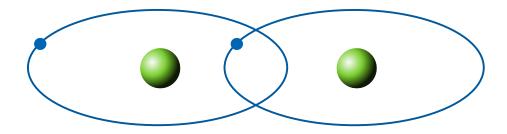



A first important result

The periodic table explained several known chemical rules

What does it happen when we bring a few atoms together?

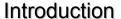
What does it happen when we bring a few atoms together?


A chemical bond is formed and keeps these ions together

Small molecules or clusters are numerically solvable in quantum chemistry

By decoupling electrons and nuclei, one obtains the electronic SE

$$\left[T_e + V_{ne} + V_{ee}\right]\psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = E\psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$$

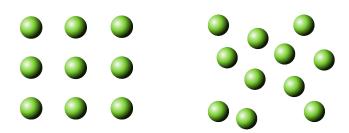

What does it happen when we bring a few atoms together?

A chemical bond is formed and keeps these ions together

Small molecules or clusters are numerically solvable in quantum chemistry

- By decoupling electrons and nuclei, one obtains the electronic SE
- Electronic problem solved via configuration interaction or coupled clusters
- The atomic positions are optimized

Atoms and molecules are still elementary components


But how do we go from there to materials?

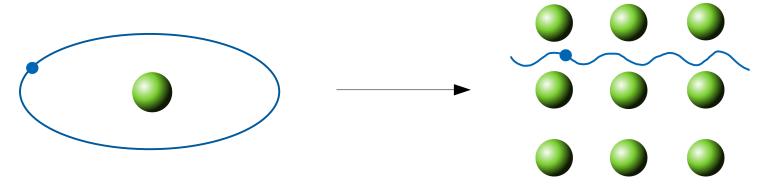
Let us consider a cluster of atoms, where we add one atom at the time



A periodic structure can be obtained

Crystalline vs amorphous solids

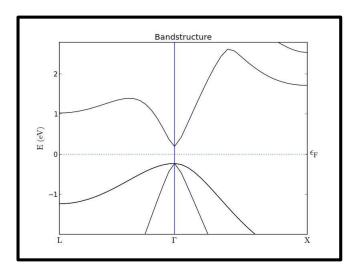
A crystalline solid is composed by many atoms in a regular arrangement



A few interacting electrons

10²³ electrons

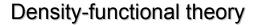
Let us remember that we must solve for an equation for $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$


A crystalline solid is composed by many atoms in a regular arrangement

Too many particles (~10²³) for a solution! In one-particle approximation, we obtain

- 1) <u>delocalized electrons</u>
- 2) energy bands

But how adequate is this simple picture?



Solving the many-electron problem in solids

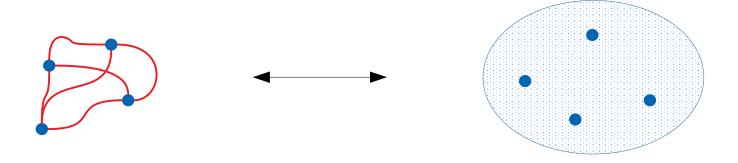
Density-functional theory (DFT) is the most used electronic structure theory

DFT is based on two fundamental concepts

1) focus is shifted from the wavefunction $\Psi(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N)$ to the electron density $n(\mathbf{r})$

Solving the many-electron problem in solids

Density-functional theory (DFT) is the most used electronic structure theory

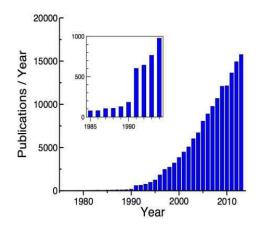

DFT is based on two fundamental concepts

1) focus is shifted from the wavefunction $\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$ to the electron density $n(\mathbf{r})$

Solving the many-electron problem in solids

Density-functional theory (DFT) is the most used electronic structure theory DFT is based on two fundamental concepts

- 1) focus is shifted from the wavefunction $\Psi(\mathbf{r}_1,\mathbf{r}_2,...,\mathbf{r}_N)$ to the electron density $n(\mathbf{r})$
- 2) a mapping onto a system of non interacting electrons in an effective potential



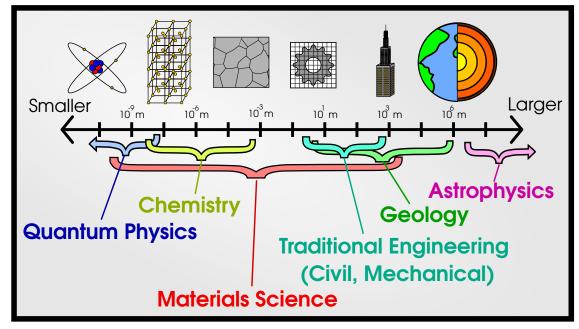
The key advantage is that we do not need to simplify the initial problem!

Solving the many-electron problem in solids

Density-functional theory (DFT) is the most used electronic structure theory It is a very general approach, from atoms, molecules and clusters to solids

Provides access to a variety of properties equilibrium crystal structure elastic properties magnetic properties optical properties thermoelectric properties

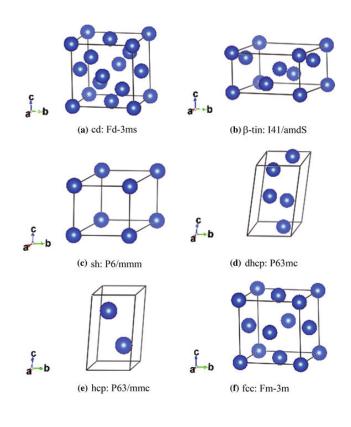
A high accuracy and a high computational efficiency


What is the limitation of not having the full electronic wavefunction?

Solving the many-electron problem in solids

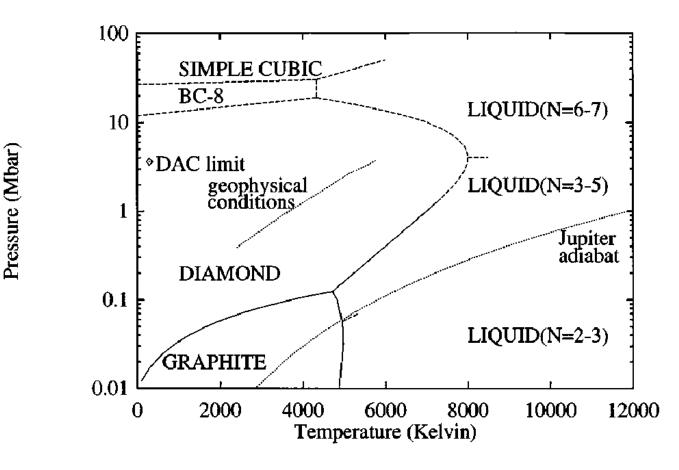
Density-functional theory (DFT) is the most used electronic structure theory

It is a very general approach, from atoms, molecules and clusters to solids

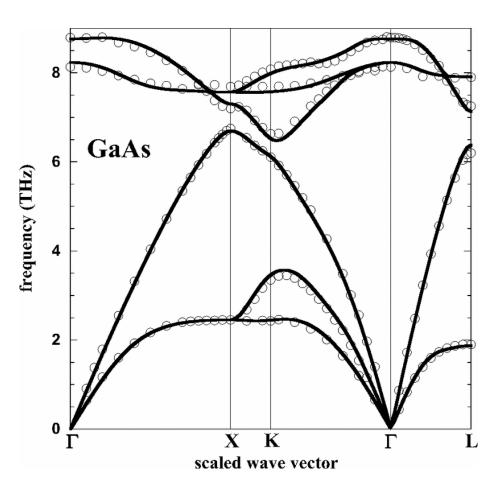

DFT provides a description of the macroscopic world in **ideal conditions**

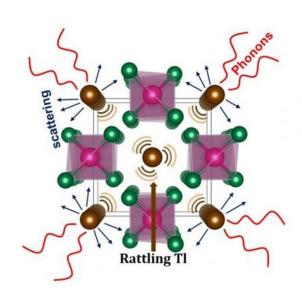
from msestudent.com

Equilibrium crystal structure of silicon under pressure



R. Martin, Electronic Structure, Cambridge University Press


Journal of materials science, 53, 7475 (2018)


Phase diagram of carbon

R. Martin, Electronic Structure, Cambridge University Press

Energy of the lattice vibrations in GaAs

Angew. Chem. Int. Ed. 60, 4259 (2021)

R. Martin, Electronic Structure, Cambridge University Press

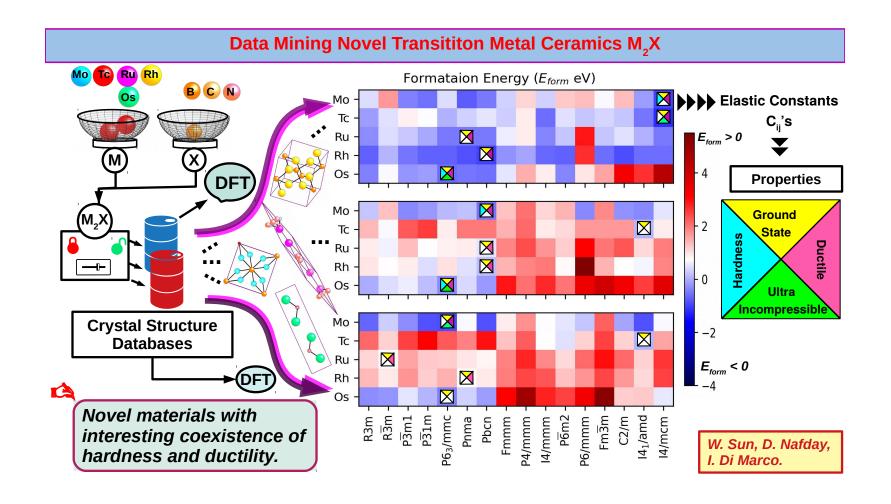
Prediction of novel 2-dimensional materials

TABLE II. List of two-dimensional dichalcogenides found by our search algorithm with the ICSD number of the corresponding bulk material and with our calculated band gap (in eV). The corresponding magnetic state (AFM refers to an antiferromagnetic ordering) is given in the last column to the right. (The cells of the table are left blank if the material is not magnetically ordered.)

2D chemical formula	3D ICSD number	Gap (eV)	Magnetism	2D chemical formula	3D ICSD number	Gap (eV)	Magnetism
$\overline{YS_2}$	651404	Metal		CrTe ₂	152836	Metal	FM
TiS_2	651178	0.02		MoS_2	644245	1.6	
TiSe ₂	173923	Metal		$MoSe_2$	644334	1.4	
TiTe ₂	653071	Metal		$MoTe_2$	015431	1.15	
ZrS_2	651465	1.1		WS_2	202366	1.8	
$ZrSe_2$	652236	0.4		WSe_2	040752	1.5	
ZrTe ₂	653213	Metal		WTe_2	073323	Metal	
HfS ₂	638847	1.3		TcS_2	081816	1.2	
HfSe ₂	638899	0.6		ReS_2	075459	1.4	
HfTe ₂	638959	Metal		ReSe ₂	081813	1.3	
VS_2	651361	Metal	FM	CoTe ₂	625401	Metal	
VSe ₂	652158	Metal	FM	$RhTe_2$	650448	Metal	
VTe_2	603582	Metal	FM	$IrTe_2$	033934	Metal	
NbS ₂	645307	Metal		NiTe ₂	159382	Metal	
NbSe ₂	645369	Metal		PdS_2	166276	1.1	
NbTe ₂	645529	Metal		$PdSe_2$	170327	1.3	
TaS_2 - AB	651089	Metal		$PdTe_2$	649016	0.2	
TaS_2 - AA	651092	Metal		PtS ₂	649534	1.8	
$TaSe_2$ - AB	651948	Metal		PtSe ₂	649589	1.4	
TaSe ₂ -AA	651950	Metal		PtTe ₂	649747	0.8	
TaTe ₂	014390	Metal		$SiTe_2$	652385	Metal	
CrS ₂	075420	Metal	AFM	SnS_2	650992	1.6	
CrSe ₂	626718	Metal	FM	SnSe ₂	651910	0.8	

Phys. Rev. X 3, 031002 (2013)

Experimental confirmation after a decade


Table 1 Theoretical and experimental results of magnetic ground states (MGS), MAE and critical temperature T_c for various 2D magnetic crystals

Sample	MGS	MAE [μeV]	$T_{\mathrm{c}}\left[\mathrm{K}\right]$	Sample	MGS	$MAE \left[\mu eV\right]$	$T_{\mathrm{c}}\left[\mathrm{K}\right]$
CrI ₃ ^{19,38}	FM	803.6 (Is)	46, 45 ^{t1}	VS ₂ ⁹²	FM	~310 (XY)	90
CrBr ₂ ^{38,99}	FM	159.5 (Is)	41. 33 ^{tf}	VSe ₂ ²¹ MnS ₂ ¹⁰⁰	FM	— (XY)	>300 ^{t1}
CrCl ₃ ^{26,99}	FM	— (XY)	16.8, 15 ^{tf}	MnS_{2}^{100}	FM	_ ` /	225
VC1 101	FM		80	MnSe ₂ ^{22,100}	FM	_	$250, \sim 300^{tf}$
$VI_{2}^{101,102}$	FM		98, 50 ^{tf}	VCl ₂ ¹⁰³	AFM	40	
VBr ₃ ^{48,104}	FM	450 (Is)	190, 27 ^{tf}	VI ₂ ¹⁰³	AFM	60	_
NiBr ₃ ⁴⁸	FM	377 (Is)	100	VBr ₂ ¹⁰³	AFM	620	200
PdBr ₃ ⁴⁸	FM	659 (Is)	110	FeCl ₂ ⁸⁹	FM	~60 (XY)	165
FeBr ₃ ⁴⁸	nAFM	_ ` ` `	70	FeBr ₂ ⁸⁹	FM	— (XY)	210
Cr ₂ Ge ₂ Te ₆ ¹⁸	FM	<1 (H)	28 ^{t2}	FeI ₂ ⁸⁹	FM	— (XY)	122
Cr ₂ Si ₂ Te ₆ ^{50,105}	FM	419 (Is)	90, 31 ^{tf}	NiI ₂ ^{25,106}	FM	1.12 (Is)	86, 35–55 ^{tf}
Cr ₂ Sn ₂ Te ₆ ⁵⁰	FM	69 (Is)	170	CoCl ₂ ²⁵	FM	1.85 (Is)	25
Fe ₃ GeTe ₂ ²⁰	FM	2000 (Is)	68 ^{t1}	MnCl ₂ ²⁵	AFM	111 (Ìs)	33
VPS ₃ ⁵³	nAFM	— (Is)	570	MnBr ₂ ²⁵	AFM	322 (Is)	40
CrPS ₃ ⁵³	FM	~160 (Is)	130	Fe_2C^{65}	FM	22.8 (XY)	861
MnPS ₃ ⁵³	nAFM	~1000 (Is)	200, 79 ^{tf}	MnNO ₂ ⁶⁹	FM	63 (Is)	67
FePS ₃ ^{53,169}	zAFM	— (Is)	260, 118 ^{t1}	CrNO ₂ ⁶⁹	FM	22 (Is)	53
CoPS ₃ 53,107	zAFM	>1000 (Is)	330	MnNF ₂ ⁶⁹	FM	2 (XY)	1128
NiPS ₂ ^{53,108}	zAFM	— (Is)	560, 130 ^{t2}	Ti ₂ NO ₂ ⁶⁹	FM	0.78 (H)	_
CrCuP ₂ S ₆ ^{58,59}	FM	28 (XY)	$64^{\mathrm{tf}'}$	Hf ₂ VC ₂ F ₂ ⁷⁰	AFM	_	313
CrCuP ₂ Se ₆ ³⁸	FM	242 (Is)	_	MnBi ₂ Te ₄ ¹⁰⁹	AFM	— (Is)	21 ^{t7}
CrOCl ⁸³	FM	~110 (Ís)	160	CoGa ₂ S ₄ ⁷⁵	FM	47 (XY)	195
CrOBr ⁸³	FM	~290 (Is)	129	CoGa ₂ Se ₄ ⁷⁵	FM	84 (XY)	516
CrSCl ⁸⁴	FM	20 (Is)	108	CoGa ₂ Te ₄ ⁷⁵	FM	634 (XY)	570
CrSBr ⁸⁴	FM	20 (Is-x)	127	FeTe ⁸²	AFM	_	45-70 ^{tf}
CrSI ⁸⁴	FM	60 (Is-y)	146	MnNCl ⁸⁴	FM	70 (Is)	238
CrSeCl ⁸⁴	FM	10 (Is-y)	118	MnNBr ⁸⁴	FM	20 (Is)	261
CrSeBr ⁸⁴	FM	4 (Is-y)	135	MnNI ⁸⁴	FM	930 (Is-x)	492
CrSeI ⁸⁴	FM	20 (Is-y)	164	CrTeBr ⁸⁴	FM	750 (Is)	187
CrTeCl ⁸⁴	FM	150 (Is-x)	248	CrTeI ⁸⁴	FM	550 (Is)	139

The synthesized 2D magnets are marked with bold sample names. In the T_c column, numbers without superscripts are theoretical results for monolayer samples. Superscripts 'tf' and 'tn' denote results of thin flakes and n-layer (n = 1, 2, 3...) experimental samples, respectively. Is, XY and H in the MAE column represent Ising, XY, and Heisenberg magnets, respectively, and Is-x and Is-y refer to the easy axis lying in the x or y directions in the plane of 2D anisotropic MXY magnets.

Nanoscale **13**, 1398 (2021)

Big data studies and perspective for machine learning

Applications for renewable energy

Photovoltaic Materials

→ to improve efficiency in energy conversion and stability to degradation

Thermoelectric Materials

→ to predict novel materials and optimize for carrier concentration

Hydrogen Storage Materials

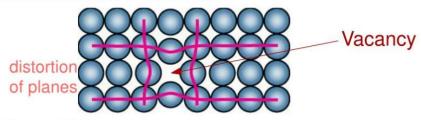
→ to identify and optimize materials with better hydrogen interaction

Catalysts for Renewable Energy

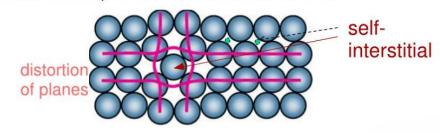
→ to design catalysts for processes like water splitting and CO₂ reduction

Battery Materials

→ to discover materials with a higher energy density and a longer lifespan

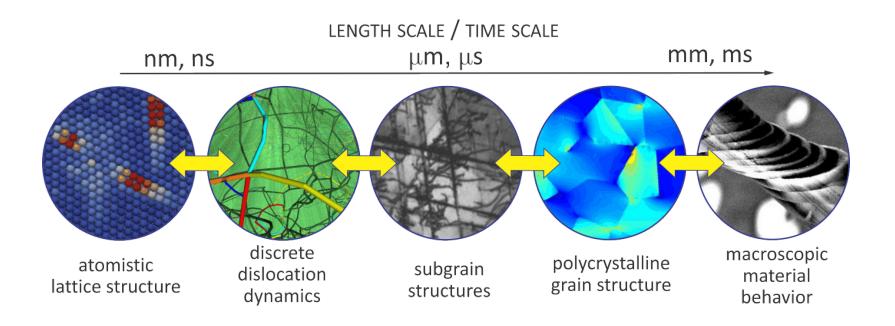

Matching macroscopic and microscopic systems

The role of defects and other imperfections


Perfect crystals do not represent reality very well...

Point Defects

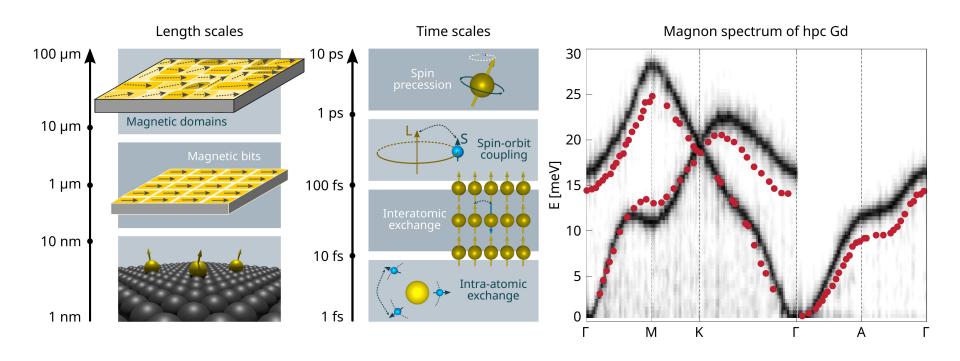
- Vacancies:
 - -vacant atomic sites in a structure.


- Self-Interstitials:
 - -"extra" atoms positioned between atomic sites.

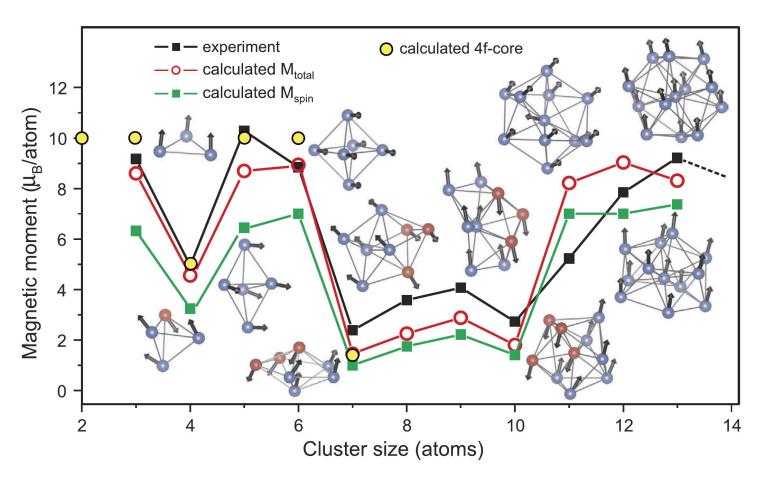
from docs.neu.edu.tr

Matching macroscopic and microscopic systems

Multi scale simulations are the next big step?



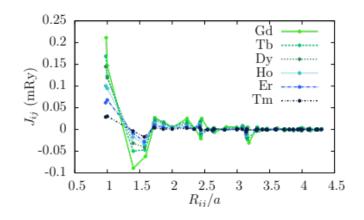
Computer-Aided Design 77, 73 (2016)


Multi scale simulations are the next big step?

Multi-scale approaches are the frontier in magnetic simulations

These problems have a very high relevance for industrial applications

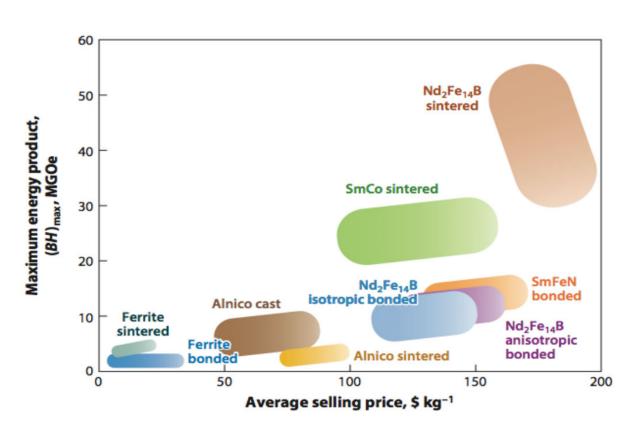
Magnetism of small Tb clusters



Scientific Reports 6, 19676 (2016)

Magnetism in rare-earth elements

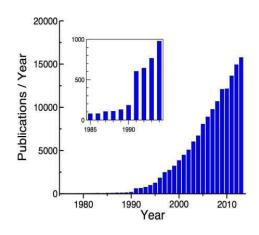
Multi-scale approaches are the frontier in magnetic simulations


- Atomic-scale description in DFT
- Effective magnetic coupling
- Coupling used for spin dynamics
- Domain walls in micromagnetics

Magnetism in rare-earth elements

Multi-scale approaches are the frontier in magnetic simulations

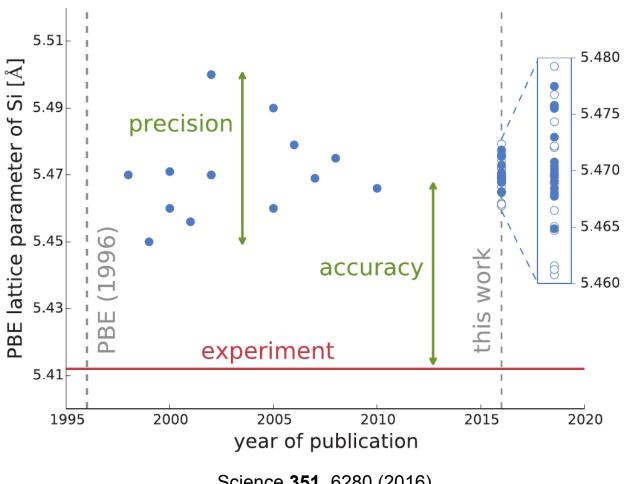
from businessinsider.com.pl



from www.sw.siemens.com

Solving the many-electron problem in solids

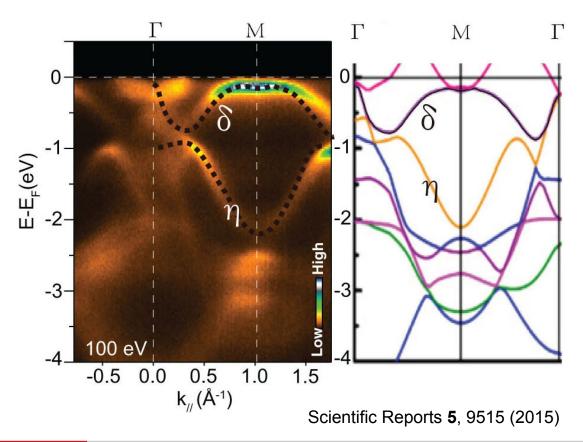
Density-functional theory (DFT) is the most used electronic structure theory It is a very general approach, from atoms, molecules and clusters to solids


Provides access to a variety of properties equilibrium crystal structure elastic properties magnetic properties optical properties thermoelectric properties

A high accuracy and a high computational efficiency

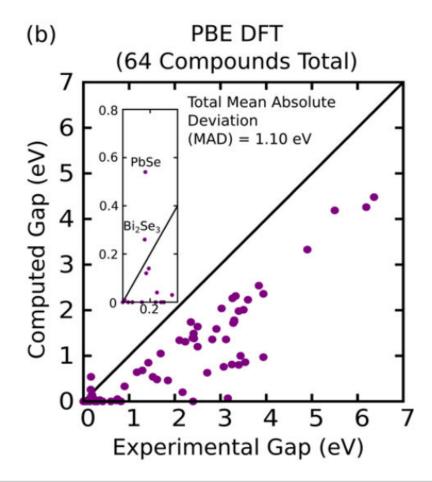
But what are exactly the limitations of modeling based on DFT?

Lattice parameter of silicon and DFT accuracy

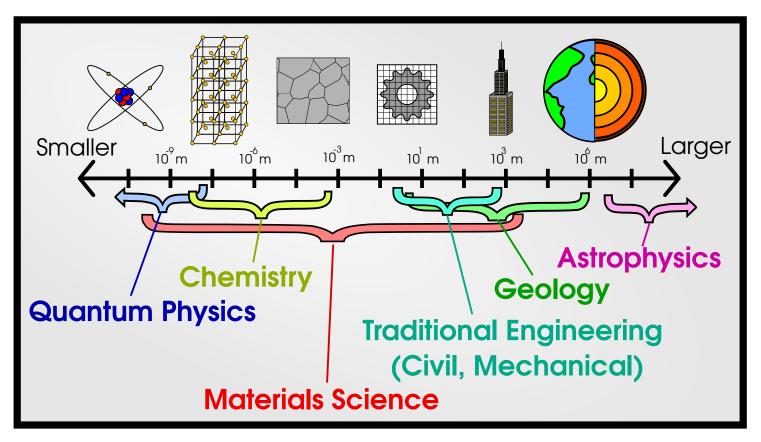


Science **351**, 6280 (2016)

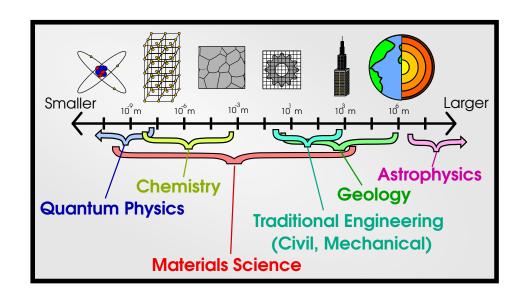
Excited-state properties


How does DFT results compare with ARPES?

Let us see the charge-density wave state in Na₂Ti₂Sb₂O


Excited-state properties

The band-gap problem in the modeling of insulators


Can we go from small to big length scales?

What if had infinite mathematical or computational power?

from msestudent.com

How far can I go with a finite computational power?

Thank you for listening!