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Abstract Elastic cross-sections for electron scattering on
neon from 0 energy up to 16 eV are analyzed by an ana-
lytical approach to the modified effective range theory
(MERT). It is shown that energy and angular variations of
elastic differential, integral and momentum transfer cross-
sections can be accurately parameterized by six MERT
coefficients up to the energy threshold for the first Feshbach
resonance. MERT parameters are determined empirically
by numerical comparison with large collection of available
experimental data of elastic total (integral) cross-sections.
The present analysis is validated against numerous electron
beams and swarm experiments. The comparison of derived
MERT parameters with those found for other noble gases,
helium, argon and krypton, is done. The derived scattering
length (for the s-partial wave) in neon, 0.227ag, agrees well
with recent theories; it is small but, differently from Ar and
K, still positive. Analogue parameters for the p-wave and
the d-wave are negative and positive respectively for all the
four gases compared.

Keywords Electron elastic scattering - Neon -
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1 Introduction

Neon is used as an admixture in numerous gas-discharge

applications; it is also an important gas in the field of exper-
imental and theoretical electron-scattering studies. Already
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some 20 years ago, it has been proposed [1] as a secondary
standard, together with helium, for normalizing relative
measurements. However, despite a great attention devoted
to this atom over the years, the scattering in very low-energy
range is still a challenging task both experimentally and the-
oretically. Therefore, the interaction of slow electrons with
Ne remains an active subject of research in particular, in the
light of the quest for establishing a complete and consis-
tent electron cross-sectional data sets for low-temperature
plasma modelling [2].

Recently, Shigemura et al. [3] employing threshold photo
electron source were able to measure Ne total cross-sections
(TCS) down to 7 meV. Linert et al. [4] and Cho et al. [5]
using magnetic angle-changer were able to extend differ-
ential cross-section (DCS) measurements to 180° scattering
angle that was inaccessible in the past. New experimental
results remain consistent with older measurements of elastic
TCS [6-13] and DCS [1, 11, 14, 15]. On the other hand, the
recent experimental achievements, especially at high angles,
became a stringent test for theories. It is well-known that
at large distances » from the target, the interaction of neu-
tral atom with slow electrons is governed by the adiabatic
polarization potential Vpo = —a/ 2r* where « is the dipole
polarizability. However, at shorter distances, the exact form
of the potential, strictly speaking, is not defined since the
complex many body interactions play a dominant role.

Different strategies have been designed to describe the
short-range correlation effects between incoming slow elec-
tron and atomic charge cloud. The most recent theoretical
approaches are based on Dirac equation. These include
works of Cheng et al. [16] using box-variational method,
Zatsarinny and Bartschat [17, 18] using B-spline R-matrix
method and relativistic model of McEachran et al. [5] .
Older approaches focused on describing low-energy elastic
scattering include ab initio calculations of Saha [19, 20];
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polarized orbital calculations of McEachran and Stauffer
[21-23], Dasgupta and Bahtia [24], Garbaty and LaBahn
[25] and Thomson [26]; and R-matrix calculations of Fon
and Berrington [27]. These theories differ both in the
asymptotic forms on the polarization potential and on details
of the short-range interaction. Moreover, the inclusion of
short-range effects for many-electron atoms in the frame
of many-body theories is not simple and it is computation-
ally expensive. Therefore, a great value in understanding
angular and energy variations of low-energy cross-sectional
data can be brought by semi-empirical analysis of exper-
imental results. Such approaches were undertaken in the
case of e”—Ne collisions by Bottcher [28] using model
potential fit, McDowell [29] and Williams [30] using phase-
shift analysis, and O’Malley and Crompton [31] using their
well-known modified effective range theory (MERT) [32,
33]. Particularly, in the latter work, the authors proposed
a fully empirical version of MERT to describe the whole
elastic range of Ne cross-sections using seven parameters
(see appendix of ref. [31]). Unfortunately, this (ambitious)
project remained somewhat unfinished.

Recently, in a couple of papers [34, 35], we showed that
an alternative form of MERT proposed by Idziaszek and
Karwasz [36, 37] describes very well the electron-elastic
scattering from helium, argon and krypton almost up to
the energy threshold for the first inelastic process. MERT
is a simple non-relativistic model describing the scattering
of spineless particles by a central long-range polarization
potential (Vpo1) while the complex short-range effects are
included within the frame of some boundary conditions
imposed on the wave function. MERT provides different
expressions for partial waves scattering phase shift as a
function of wave number of electron k. However, in the
derivation of original MERT expressions by O’Malley et
al. [32], both the long-range and the short-range parts of
the interaction were approximated by the effective range
expansions. On the contrary, in the approach proposed by
Idziaszek and Karwasz [36], the contribution of the long-
range polarization interaction to the scattering phase shifts
is solved exactly while the effective range approximation
is introduced exclusively for the short-range part of the
potential. This simple alteration with respect to the original
model allowed extending the applicability of semi-empirical
MERT analysis to much higher energies than it has been
considered so far (e.g. much below 1 eV in noble gases;
see ref. [38]). Moreover, we showed that this approach
could be successfully used to describe electron-elastic scat-
tering from quasi-spherical (with ¥ symmetry) molecules
like Hy and CHy [34, 39] in relatively wide energy range.
Consequently, we demonstrated that using only one equa-
tion with few adjustable parameters to describe partial
waves scattering phase shifts, it is possible to parameter-
ize almost the entire set of elastic differential, integral and

momentum transfer cross-sections for electrons collisions
with light spherical targets characterized by low dipole
polarizability.

This paper aims to complete our effective range analy-
sis on noble gases (He and Ar in [34] and Kr in [35]) by
studying e~ —Ne elastic collisions. Using the most recent
experimental results, it is shown that just as for the other
noble gases studied by us in the past, only six parameters of
the effective range expansions are needed to describe both
energy and angular dependences of scattering cross-sections
for e™—Ne interaction up to the threshold for the first Fes-
hbach resonance (< 16 eV). In addition, a comparison of
derived parameters of the effective range expansions for all
studied atoms, He, Ne, Ar and K, is done.

The paper is organized as follows: In Section 2, the
principles of modified effective range theory are briefly
described in the context of electron-neon interaction. In
Section 3, the effective range analysis of integral, momen-
tum transfer and differential cross-sections is presented. The
paper is accomplished with conclusions in Section 4.

2 Theoretical Model

Details of the analytical approach to MERT have been
described in previous papers [34, 36]. In this section, only
a very brief account will be recalled. Current approach is
based on properties of Mathieu functions—the analytical
solutions of the radial Schrodinger equation with pure polar-
ization potential (Vpo = /2r*). The scattering phase shift
n; experienced by /th partial wave is given by the following
relation (in atomic units):

m? — tan’ §; + B, tan Sim? — 1)

tann; (k) = ~ ,
(k) tand;(1 —m?) + B/(1 — m7 tan? §;)

ey

where §; = mw(vy — 1 — 1/2)/2 . Here, m;(k) and v;(k)
(characteristic exponent of Mathieu functions) denote the
energy-dependent parameters which have to be determined
numerically from analytical properties of Mathieu func-
tions (see ref. [34, 36] for details of numerical procedure).
The contribution of the short-range interaction is given
by parameter B (k) . The latter is approximated by the
quadratic effective range expansion:

Bi(k) = Bi(0) + RIR*k*/2 + ..., )

where B;(0) is the zero-energy contribution and R; can be
interpreted as the effective range for a given partial wave. In
the particular case of / = 0, By can be expressed in terms of
Ay, the s-wave scattering length, as: By = —R*/A(, where
R* = /a . In the calculations, an experimental value of
the dipole polarizability of neon, o = 2.571a8 [40], is used.
The parameters of the effective range expansions, B; and
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R;, have to be determined empirically by comparison with
some experimental data.

Integral elastic (o1g), momentum transfer (ont) and dif-
ferential elastic (do/dw) cross-sections are calculated using
the standard partial wave expansions:

4 00
o = 73 21+ Dsinm(o), 3)
=0
4 & .
owr = 45 >+ Dsinln (k) = s (0] “)
=0

l o >
do/dw = ﬁ' Z(2l + 1) exp(in;) sin(n;) Pi(cos 6)|=, (5)
1=0

where 6 is the scattering angle and P;(cos 6) are the Legen-
dre polynomials.

This semi-empirical model has been applied to verify that
in the regime of energies for elastic scattering (< 16 eV), the
leading contributions for neon come from s, p and d waves
(I =0, 1, 2) while the contribution of higher partial waves is
small and can be described by taking only the leading order
contribution to the phase shift:

Tok?

) = A+ 120 1372

forl > 2. (6)

Equation (6) is exact at the low-energy limit [32], and it can
be also reproduced using a first-order Born approximation.
Alternatively to Eq. (6), one can also describe the contri-
bution of higher partial waves (I > 2) taking into account
the higher-order energy terms in the long-range forces con-
tribution to the phase shifts given by Ali and Fraser, i.e.
Egs. 12-14 in ref. [41]. However, I checked that the inclu-
sion of these higher order terms is negligible in considered
energy range and simple Eq. (6) is sufficient to include the
contribution of higher partial waves (! > 2) which can-
not overcome the repulsion of the centrifugal barrier and
probe the region of the short-range interactions. Moreover,
I also checked that the contribution of quadrupole polariz-
ability terms present in Ali and Fraser’s expressions [41] are
negligible for neon in considered energy range.

3 MERT Analysis

The scattering-phase shifts can be derived by fitting MERT
either to the experimental elastic TCS (as in ref. [34] for
He, Ar), to DCS (as in ref. [35] for Kr) or to momen-
tum transfer cross-sections (MTCS). In this work, the fact
is used that experimental low-energy TCS for Ne are gen-
erally in very good agreement with each other. Moreover,
TCS are measured in absolute way, and in low-energy range,
they correspond to elastic integral cross-sections. Therefore,
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the scattering phase shifts were determined by performing
simultaneous robust fit of Eq. (4) to large collection of TCS
data sets (using MATLAB routine for nonlinear least-square
regression of multiple data sets). No additional constraints
on fitting parameters were imposed. Figure 1a presents the
results of such fit for data below the first Fesbach resonance
(< 16 eV). The obtained curve stays within 10 % agreement
with all experimental points, i.e. within the combined error
bar of separate measurements. In Fig. 1b, the contribution
of s-, p- and d-waves to TCS is also shown.

The s-wave scattering is dominant in whole energy range
considered and the contribution of higher partial waves
can be practically neglected up to 2 eV of impact energy.
The latter result stays in perfect agreement with calcula-
tions of O’Malley and Crompton [31] using original MERT
approach, but applied only up to 2 eV. The present results
confirm also a characteristic behaviour of p-wave contri-
bution, which reaches O at around 1.2 eV. However, this
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Fig. 1 a MERT simultaneous robust fit (solid line) to experimental
total cross-sections (TCS) for e~ — Ne collisions. The experimental
data are from Salop and Nakano [6] , Stein et al. [7] , Ferch and
Raith [8] , Nickel et al. [9] , Kumar et al. [10] , Gulley et al. [11] ,
Szmytkowski et al. [12] , Baek and Grosswendt [13] , and Shigemura
et al. [14] b MERT-derived contribution of s-,p- and d- partial waves
to TCS
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Table 1 Parameters of the effective range expansions for electron scattering from noble gases: Ag = —R*/ By (the scattering length), B; (zero
energy contribution for p-wave), B, (zero energy contribution for d-wave), Ry (s-wave effective range), R (p-wave effective range) and R»

(d-wave effective range)

Ao(ap) B By Ro(ao) R (ao) R (ap)
e~ — He [34] 1.186 —20 — 0.01 —100 —
e~ —Ne 0.227 —0.231 0.001 3.697 —0.028 0.361
e~ — Ar[34] —1.51 —0.44 0.21 —0.38 0.06 0.30
e~ — Kr[35] —3.486 —0.599 0.125 0.533 0.039 0.720

minimum is not visible in TCS due to the small contribu-
tion of the p-wave when compared to the s-wave at this
energy range. We note, however, that in argon discharges,
the O cross-section in the p-wave scattering reflects in a
double electron temperature distribution [42]. Recent mea-
surements in RF-driven discharges in neon [43] revealed an
average temperature of 8 eV, but in a specific region of the
discharge tube, it drops down to below 2 eV.

The derived six parameters of the effective range expan-
sion are given in Table 1. In particular, the s-wave scattering
length, Ag = 0.227ap , is in very good agreement with
previous experimental and theoretical determinations, giv-
ing the results between 0.2 and 0.3ag. The present result is
particularly close to 0.224ag given by the most recent cal-
culations of Cheng et al. [16] who has designed the box
variational method specifically to describe very low-energy
e~ —Ne scattering. The extensive comparison of scattering

lengths for neon obtained using different methods has been
done in the latter work; therefore, it will not be repeated
here.

Table 1 gives also parameters of the effective range
expansions for other noble gases published in our previ-
ous articles [34, 35]. Using these factors, one can calculate
the elastic cross-sections up to the energy threshold of the
first inelastic process. However, at present, it is difficult
to find any systematics in the calculated parameters—they
reproduce the contribution of overall scattering potential,
consisting of the static, exchange and polarization parts. The
scattering length Ag lowers systematically from about 1.2ag
in He to 0.227a¢ in Ne to —3.5a¢ in Kr; several authors,
see for example [44], related this tendency to rising polariz-
abities in the series He—Xe. An analogue parameter B for
the p- wave is negative while B, for the d- wave is positive
for all the four gases compared. The other parameters from
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approximation using (6) is 2 3 . 1
shown as well (note a different g 1 5 . i
abscissa scale in the f-wave ERTEY . ot
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+— S— : : 1E-4
1E-3 0.01 0.1 1 10 1 10
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Table 1 does not show such regular behaviour. Neverthe-
less, the physical meaning of the k2 terms in the expansion
(2), representing the effective range corrections, is still to
be understood. Moreover, the multi-term fit is always char-
acterized by a certain portion of ambiguity since the large
number of independent parameters can prevent their unique
determination from experimental data. It is particularly
important for helium where it is difficult to unambiguously
determine both the s- and the p-wave phase shifts due to
the lack of a strong energy dependence of the cross-section
[45]. Furthermore, the effective range corrections are rela-
tively small in the low-energy regime in comparison to the
leading contribution due to the s-wave scattering length and
the p-/ d-wave zero-energy contributions. Consequently, R;
terms can be strongly affected by the fitting procedure (e.g.
a choice of data range for fit) and the measurement uncer-
tainties in the experimental data. Therefore, the data shown
in Table 1 can be still changed if new and more accu-
rate experimental results will be provided in lower energy
range.

The parameters from Table 1 for Ne were used in Eq.
(1) to calculate the scattering phase shifts, and the results
are compared with other theories in Fig. 2. It is clear that
the agreement between the present calculations and the
results reported by other authors is quite good, 5 % consis-
tency up to 10 eV for s- and p- waves. Our non-relativistic
approach should be sufficient to describe scattering data
since the spin-orbit splitting of the phase shifts is generally
small in considered energy range [16]. Figure 2 compares
also the f-wave phase shift calculated in the Born approx-
imation using Eq. (6) with the chosen reference data. The
perfect agreement confirms that the contribution of higher
partial waves (I > 2), which are not distorted by the short-
range interaction, can be very well described using simple
Eq. (6).

To validate additionally the present approach, the phase
shifts shown in Fig. 2 were used to calculate elastic momen-
tum transfer cross-sections using Eq. (4) and differential
cross-sections using Eq. (5) to compare against numerous
experimental and theoretical data. The results are shown
in Figs. 3 and 4 respectively. Presently, calculated MTCS
stays within 10 % agreement with all swarm [46-51] and
beam-derived [4, 5, 11, 14, 15] experimental results below
10 eV and within 15 % for higher energies. Unlike the
TCS, the MTCS is characterized by a small concave bend of
the curve around 2-6 eV. MERT calculations indicate that
the increasing p-wave contribution becomes comparable to
decreasing s-wave in this energy range. When compared to
theoretical results [16, 18, 19, 22, 27], MERT is the most
consistent with the recent model of Cheng et al. [16] up to
9 eV of impact energy. However, for higher energies, their
calculations start to decrease with energy (not shown here)
what is inconsistent with the observation, and the present

@ Springer
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Fig. 3 a Experimental and b theoretical momentum transfer cross-
sections for elastic e~ —Ne scattering below 16 eV compared with the
present MERT calculations. The swarm-derived data are from Robert-
son [46], Kuizumi et al. [47], Biaggi [48], Morgan [49], Puech [50]
and Siglo [51]. The beam-derived data are from Linert et al. [4], Cho
et al. [5], Gulley et al. [11], Register and Trajmar [14] and Brewer et
al. [15]. The theoretical data are from Cheng et al. [16], Zatsarinny and
Bartschat [18], Saha [19], McEachran and Stauffer [22] and Fon and
Berrington [27]

MERT becomes more comparable with the recent B-spline
R-matrix, which are results of the study of Zatsarinny and
Bartschat [18].

MERT-derived angular distributions of DCS shown in
Fig. 4 are in very good agreement with all available exper-
imental data [1, 4, 5, 11, 14]. These results show that our
simple model using only six parameters is able to take
into account not only energy but also the angular depen-
dence of the scattering cross-sections. In particular, the
present calculations are consistent with very low-energy
data of Shi and Burrow [1]. To the best of our knowl-
edge, their sets are so far the only experimental DCS
available below 1 eV. Note also a very good agreement
with high angle experimental data of Linert et al. [4] and
Cho et al. [5].
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4 Conclusions

In this paper, the effective range analysis of electron inter-
action with noble gases, applied previously to helium, argon
[34] and krypton [35], has been completed by studying
e~ —Ne collisions. It has been shown that non-relativistic
modified effective range theory (MERT) in the form pro-
posed by Idziaszek and Karwasz [36] can be used to
describe elastic integral, momentum transfer and differen-
tial cross-sections for electron-neon collisions up to 16 eV,
i.e. the threshold for the first inelastic process. The effec-
tiveness of the model confirms that elastic collisions of
slow electrons with neon (and other noble gases) are
dominated by the long-range adiabatic polarization potential
(Vpol = —a/2r*) while the contribution of the short-
range potential (related with a complex multi-body inter-
action) to the scattering phase shifts of s—, p— and d—
partial waves is very well approximated by simple quadratic
expressions— the effective range expansions. It was shown

<>

150 0 50 100 150
Scattering angle (deg)

that only six effective range parameters are sufficient to
characterize energy and angular variations of whole elas-
tic scattering cross-sections. This is an improvement when
compared to the equivalent but fully empirical seven-
parameter model proposed by O’Malley and Crompton [31].
Moreover, in contrast to the latter approach, the present
model describes large sets of elastic cross-sections using
only one equation for the scattering phase shifts experienced
by dominating partial waves.

The comparison of empirically determined effective
range parameters for neon with those found for other noble
gases [34, 35] does not reveal any particular systematics.
Nevertheless, more theoretical efforts are needed in order
to understand the physical interpretation of these parame-
ters and to relate the effective range approximation with
the real interaction potential. This could be a useful subject
for the inverse scattering theory aiming to recover unknown
short-range potential from a set of scattering data. More-
over, the relativistic version of MERT [52] can possibly
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extend the applicability of the present theory to much
heavier targets such as xenon (Xe) where subtle spin-orbit
interactions play an important role. This work is in progress.
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