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Abstract

The elastic cross sections for electron scattering on krypton from zero energy up to 10 eV have
been analyzed by the modified effective range method. A simple model based on the analytical
solution of the Schrodinger equation with the polarization potential using explicitly determined
scattering phase shifts for the three lowest partial waves describes the elastic differential, integral
and momentum transfer cross sections up to the energy threshold of the first inelastic process
well. In detail, the contribution of the long-range polarization potential to the scattering phase
shift is exactly expressed, while the contribution of the short-range effects is modelled by simple
quadratic expressions (the effective range expansions). The effective range parameters are
determined empirically by comparison with the latest experimental differential cross sections.
Presently, the calculated integral and momentum transfer cross sections are validated against
numerous electron scattering experiments and the most recent quantum-mechanical theories. To
complete the picture, the two-term Boltzmann analysis is employed to determine the electron
transport coefficients; the agreement with the electron swarm experimental data is found to be

very good.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years, the scattering of low-energy electrons by
krypton has become a subject of scientific interest. The
motivation for studies is related inter alia to the search for
self-consistent cross-section datasets that are necessary for
modeling low-temperature plasmas [1]. In particular, tokamak
edge plasmas will involve chemical species rarely studied by
theory or by experiment; therefore, some scaling laws and
predictive models for converting electron-scattering processes
down to thermal energies are needed [2].

Recent progress in electron sources and novel angular
electron selectors have allowed beam measurements down to
thermal energies and at scattering angles that were hardly
accessible in the past. Recent achievements in studies of low-
energy e -Kr interactions include measurements of the total
cross section down to 14 meV of impact energy by Kurokawa
et al [3, 4] and the experimental determination of differential
cross sections (DCS) by Cho et al [5], Linert et al [6] and

0031-8949/14/105401+10$33.00

Zatsarinny, Bartschat and Allan [7] that cover almost the
entire angular range of 0—180°. Particularly, in the latter work,
the DCS were measured with a double hemispherical elec-
trostatic energy selector with an energy resolution higher than
15 meV. All of these new experimental results combined with
the old measurements (for example, see review [8]) provide
data that are a very good test of the new theoretical models.
Krypton is an interesting benchmark for theories and is
particularly valuable for estimating the importance of
relativistic corrections and the short-range components of
polarizability. Recently, Zatsarinny and Bartschat validated
in several works [7, 9—12] the fully relativistic Dirac-based
B-spline R-matrix close-coupling calculations of elastic and
excitation (near-threshold) cross sections against a large
amount of experimental data. In the Kr electron-excitation
calculations [9], they used 31 physical states of the target
plus a pseudostate accounting for the Rydberg states and
the ionization continuum, while for the elastic calculations
[7], only the ground and one pseudo state were needed.

© 2014 The Royal Swedish Academy of Sciences Printed in the UK
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Earlier models used either Hartree—Fock [13-15] or
Dirac-Fock [16-19] codes for the static part of the interaction
potential and for the proposed different approaches in treating
the effects of electron-atom short-range interactions such as
the correlation and exchange including the density functional
theory [15], a dipole and quadrupole polarization with a short-
range cut-off parameter [17], repulsive dynamic distortion
correction [18, 19] and adiabatic exchange [20]. Such
extensive efforts are a consequence of the fact that the short-
range effects become increasingly important for low electron
impact energies [21] in which the dominant long-range dipole
polarization is challenged. The inclusion of these effects for
many-electron atoms in the frame of many-body theories is
not simple, and it is computationally expensive.

Here, an alternative way to discuss the low-energy
electron scattering problem is presented, i.e. the inverse pro-
cedure using experimental cross sections to derive the scat-
tering phase shifts. This approach is based on the modified
effective range theory (MERT) by O’Malley et al [22, 23].
MERT, as originally proposed for scattering on the long-
range polarization potential in a very low energy range,
develops the partial-wave phase shifts (#,) into a series of &,
the electron momentum. For the s-wave and a few higher
partial waves (usually p and d) that probe the region of the
short-range interaction, the parameters of the #,(k) series
(called the effective-range expansions) have to be determined
empirically by comparison with some numerical data. MERT
in its original formulation and in some modified versions have
been widely used for the analysis of integral and momentum
transfer cross sections in noble gases and spherical-like (X
symmetry) molecules (for examples, see [24-31]). However,
the applicability of the theory was limited to the very low
energy range in the past. Particularly, as shown in the detailed
analysis for all of the noble gases by Buckman and Mitroy
[32], the upper-energy limit for the validity of the #, (k) series,
as proposed in the original MERT formulation [22] for the
electron scattering on krypton, is only 0.4 eV.

More recently, an alternative approach to MERT has
been proposed by Idziaszek and Karwasz [33, 34]. It consists
of calculating the phase shifts due to the long-range polar-
ization potential from the exact Mathieu’s solutions of the
Schrodinger equation and to introducing the effective-range
expansion exclusively for the short-range part of the inter-
action. In a recent publication, we showed [35] that this
alternative method satisfactorily describes electron and posi-
tron scattering from helium, argon, molecular hydrogen and
methane almost up to the energy threshold for the first
inelastic processes.

In this paper, MERT [33, 34] is used to describe the
elastic cross sections for electron—krypton collisions up to the
impact energy of 10eV. In particular, it is shown that this
simple non-relativistic model used to describe the scattering
of spinless particles needs only six parameters to describe the
elastic differential, integral and momentum transfer cross
sections up to the energy of the first electronic excitation in
krypton. To improve the precision in the phase-shift deter-
minations, the analysis is based on the most recent and

accurate experimental cross-section datasets by Zatsarinny,
Bartschat and Allan [7], which extend over large angular and
energy ranges.

This paper is organized as follows: In section 2, the
principles of the modified effective range theory are described
briefly in the context of electron-krypton interaction. In
section 3, the scattering phase shifts are determined in order to
calculate differential cross sections (reported in section 4),
integral elastic cross sections (in section 5) and momentum
transfer cross sections (in section 6). To validate the present
approach, momentum transfer data are inserted into the
Boltzmann transport equation in order to calculate the elec-
tron swarm parameters and then compare them with the
experimental data. The conclusions are presented in section 7.

2. Theoretical model

Details of the analytical approach to MERT have been
described in previous papers [33-35]. In this section, we will
recall only a brief account in the context of the electron-
krypton collisions. The relative motion of the electron and
atom is described by the radial Schrédinger equation:

@ ul+1>_F(R*f

g O R HO =0 (1)

where R* = \/ae’u/h?; this is a typical length scale related to

the »~* interaction with a denoting the dipole polarizability, e
the elementary charge, 4 the reduced mass of the projectile/
target system and # the Planck constant. Here, Vs (r) refers to
the short-range part of the interaction potential, which
includes static and exchange forces that come into play at the
small electron-atom distances that are comparable to the size
of the atom and in which the atom cannot be treated as a
single object. In the MERT approach, Vs (r) is neglected; then,
equation (1) is turned into the Mathieu’s modified differential
equation [22, 23], which possesses the analytical solutions.
The short-range effects related to Vs (r) are expressed in terms
of some boundary conditions imposed on the wave function at
r — 0 and are included explicitly in the framework of MERT.
Using the Mathieu function, one can see that the scattering
phase shifts experienced by the wave functions of different
angular momenta are given by the following relation [22, 23]:

m}? — tan®s; + B, tan 5,(m,2 - 1)

tann, =

tan 61(1 - mlz) + El(l - m} tanzél) @

where 6, = n(y, -1 - 1/2)/ 2. Here, m; and v, (the Mathieu
characteristic exponent) denote the energy-dependent para-
meters; these parameters have to be determined numerically
from the analytical properties of the Mathieu functions (see
[33-35]). The contribution of the short-range interaction is
manifested in parameter B, (k), which is related to the addi-
tional phase shift that is induced by the short-range potential.
This parameter is approximated by the quadratic effective
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Figure 1. The positive (repulsive) part of the long-range electron—
krypton effective potentials for the few lowest partial waves. The
distance between the interacting elements is scaled by the
characteristic distance R*.

range expansion:
Bi(k) ~ By(0) + RIR*K2/2 + ... 3)

where R; can be interpreted as the effective range for a given
partial wave. In the particular case of [ = 0, By(0) can be
expressed in terms of A, and the s-wave scattering length can

be expressed as: By = —R*/A.

To estimate the number of partial waves necessary to be
treated by equation (2), one should compare the energy of the
projectile with the value of the repulsive long-range potential
for each partial wave at the cut-off distance in which the
short-range effects disappear. The long-range effective
potential is composed of a centrifugal barrier /(I + 1)7~2 and

2
a dipole polarization term (R*) r~*. In figure 1, this potential

is drawn for the few lowest partial waves in the case of the
electron—krypton interaction. In the calculations, a recent
experimental value of the polarizability @ = 16.86a, [36] was
used. This is slightly lower than the value of a=17.3 aj,
calculated in [7]. It is also assumed ad hoc that the cut-off
distance is equal to the characteristic length for r—* interac-

tion, namely r = R* = 4.11ay. Such a size for an atom is an

overestimate since R* is larger than the typical radius of the
krypton atom (~3a) calculated from the van der Waals
equations of state [37].

Consequently, since only purely elastic scattering is of
interest in the present analysis, only electron energies below
the first electronic excitation, 9.9152 eV [12] are considered.
From figure 1, it is clear that the p-wave (I = 1) and d-wave
(I = 2) of the projectile with a kinetic energy of 10eV are
able to overcome the repulsive long-range effective potential

at the cut-off distance (r = R*) and are thus able to deeply

probe the region of the short-range interaction (r < R*). On

the other hand, the f~wave (I = 3) very weakly probes the

space of the krypton atom, and the higher partial waves
(I > 3) cannot overcome the repulsion of the centrifugal
barrier at all. Therefore, in the present analysis, only three first
partial waves are treated accurately, namely s, p and d. The
small contribution of the higher partial waves is described by
taking only the leading order contribution to the phase shift:

ak?
81— 1/2)( + 1/2)(I + 3/2)°

tan 7, (k) = forl>2. (4)

Equation (4) is exact at the low-energy limit [22], and it
can also be reproduced using a first-order Born approximation.
Alternatively, one can also describe the contribution of the
higher partial waves (/>2) to equation (4) using the higher-
order energy terms in the long-range forces contribution to the
phase shifts given by Ali and Fraser (equation 12-14 in [38]).

The integral elastic (o1g), momentum transfer (oyr) and
differential elastic (do/dw) cross sections are calculated using
the standard partial wave expansions:

o = 25 01+ 1) s ) 3)
=0
dr - )
oMT = ﬁZ(l + 1) sin [ﬂl(k) - 77]+](k):|, (6)
=0
d 1 v i
£ =— E(zz + 1) exp (in,) sin (,)Pi(cos 0) | (7)

where 0 is the scattering angle. By substituting equations (2)
and (3) for the three first partial waves and equation (4) for the
higher angular momentum (100 waves in the present analysis)
into equations (5)—(7), one gets relations that can be fitted to
experimental cross sections in order to determine the
unknown (six) parameters of the effective range expansions,

namely (A = —R*/ Bo): the s-wave scattering length, B; and

B;,: the zero energy contribution of the p- and d-wave,
respectively, and Ry, R;, and R,: the effective ranges of all
three considered waves. All of these parameters approximate
the contribution of the short-range part of the interaction
potential to the scattering phase shift.

3. Phase shift analysis

Using a typical MERT analysis, which was the type of ana-
lysis used in our previous works [33-35], we derived the
scattering phase shifts by fitting the model to the experimental
total cross sections below the inelastic threshold since they
are measured absolutely and extend frequently well below
1 eV of impact energy. However, much more information is
included in the elastic DCS. In particular, DCS reflect the
dynamics of cross-section variations versus the impact energy
(E) and scattering angle (6). Therefore, in this work, the
scattering phase shifts are determined by applying MERT to
the most recent DCS measured with the magnetic-field
angle analyser, as reported by Zatsarinny et al [7]. This
experimental technique allows us to extend the range of DCS
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Figure 2. MERT simultaneous fit (solid line) to six elastic differential cross-section datasets measured by Zatsarinny, Bartschat and Allan [7]
(dots) at 45°, 90°, 117°, 135°, 150° and 180°. For clarity, not all of the experimental points are presented. The experimental data of

Weyhrater et al [39] (open squares) for 90° and the B-spline R-matrix
comparison.

measurements from 0° to 180°, removing ambiguities in the
extrapolating data into angles inaccessible in earlier experi-
ments, which thus yields a demanding check for theories.
Moreover, the data of Zatsarinny et al [7] were obtained in a
very wide energy range with very high resolution (15 meV).

Figure 2 presents the results of the simultaneous
unweighted least-square fits of equation (7) to six DCS
datasets [7] measured at 45°, 90°, 117°, 135°, 150° and 180°
from 0.05 to 10.0eV. For comparison, the very low energy

calculations (dashed line) of Zatsarinny et al [7] are also shown for

experimental data of Weyhreter ef al [39] measured at 90° are
also shown.

Our MERT fit is in good agreement with not only the
experiment but also with the recent relativistic R-matrix cal-
culations of Zatsarinny et al [7] (dashed line). Moreover, both
models give much deeper local minima of the DCS than the
experiment, which could be related to the finite angular
resolution and the strong dependence of the cross section on
the scattering angle, as explained by Zatsarinny et al [7].
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Figure 3. The comparison of the s-, p- and d-wave scattering phase shifts (3, #, and #,) derived in the present MERT analysis with the
calculations of Fon et al [13] (stars), McEachran et al [20] (triangles) and Bell ef al [14] (circles). The f~wave phase shift (#;) calculated in the
Born approximation (solid line) using equation (4) and the Ali and Fraser expressions (dashed line) from [38] are also shown.

The derived six parameters of the effective range
expansion are given in table 1. In particular, the s-wave
scattering length A = —3.486a, is in excellent agreement
with the previous experimental and theoretical determina-
tions. The Fano method (i.e. the perturbation of the optical
absorption lines) gives values in the range of —3.03aq to
—3.26a (see [40] and the references therein). An analysis of
the swarm coefficients [41] provides a value of —3.35ay,
while the modified effective range analysis (original
approach) of the very-low energy DCS by Weyhreter et al
[39] gives —3.48a. As expected, the latter result is the same
as the value obtained here using the analytical approach
to MERT.

The parameters from table 1 were used in equation (2) to
calculate the scattering phase shifts, and the results are
compared with some other theories in figure 3. The com-
parative models include the ab initio calculations of Fon et al
[13], McEachran and Stauffer [20] and Bell ef al [14], which
do not similarly take into account the electron spin polariza-
tion effects as does the present theory. It is clear from figure 3
that the agreement between the present calculations and the
results reported by other authors is very good in the full
considered energy range, though the best agreement is
obtained with the R-matrix theory of Bell et al [14].

Figure 3 also compares the f-wave phase shift (#;) cal-
culated in the Born approximation using equation (4) with the
chosen reference data. The agreement is very good in the low
energy range, but the theory starts to diverge slowly at higher

Table 1. Parameters of the effective range expansion for the electron
scattering from krypton: A = —R*/ B (the scattering length), B,
(zero energy contribution for the p-wave), B, (zero energy
contribution for the d-wave), Ry (s-wave effective range), R, (p-wave
effective range) and R, (d-wave effective range).

Rg (ap)
0.533

A (ap) B, B, R; (ag)

0.039

R; (ap)
0.720

e -Kr -3486 -0.599 0.125

energies when approaching 10eV. This discrepancy is
reduced when the higher-order energy terms of the long-range
forces’ contribution to the phase shift given by Ali and Fraser
(equations 12-14 in [38]) are included. I also checked to
ensure that the contribution of the quadrupole polarizability
terms present in their expressions is negligable for krypton in
the considered energy range. Since the f-wave’s and the
higher partial waves’ contributions to the cross sections are
small (below 10eV) when compared to the s-, p- and d-
waves, the inclusion of the higher-order terms given by Ali
and Fraser [38] do not significantly change the fitting para-
meters given in table 1.

To validate the present approach, the phase shifts shown
in figure 3 were used to calculate the elastic differential,
integral and momentum transfer cross sections against
numerous experimental data. The results are described in
subsequent sections.
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Figure 4. Differential cross section for elastic e”-Kr scattering at angles between 20° and 100° as a function of the projectile energy. The
experimental data of Weyhreter ef al [39] (25 meV energy resolution and 30% absolute DCS value uncertainties) are also compared with the

present MERT calculations.

4. Differential cross sections

Figures 4 and 5 show the low-energy (<2 eV) DCS results for
the calculated elastic e -Kr scattering versus the incident
electron energy and the scattering angle, respectively. The
calculations are compared against the experimental datasets of
Zatsarinny, Barstchat and Allan [7] and Weyhreter et al [39].
To the best of our knowledge, both sets are the only

experimental results available below 2 eV to date. In general,
the agreement between the present analysis and the experi-
ments must be judged as good. The present MERT is also
consistent with the recent relativistic R-matrix calcula-
tions [7].

Figure 6 shows the DCS results for elastic e™-Kr scat-
tering at incident electron energies of 5, 7.5 and 10eV. The
present results are in very good agreement with the
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For clarity, not all of the experimental points are presented.

experimental data of Srivastava et al [42] and Danjo [43],
which were both obtained with electrostatic energy-analysers
and with Cho et al [5] (10 eV only) and Linert et al [6], which
were both obtained with a magnetic angle-changer. An
extensive comparison of the different elaborated ab
initio theories against these experimental sets can be found
in [6, 7].

5. Integral elastic cross sections

Our MERT-derived scattering phase shifts (#,) were intro-
duced into equation (5) to calculate the integral elastic cross
sections (og). In the considered energy range (E < 10eV),
the elastic cross sections correspond to the total cross
sections. The latter were measured in numerous electron beam
experiments [44-50]. The comparison between the present
results and the experimental total cross sections is shown in
figure 7. The present MERT data coincide in the Ram-
sauer—Townsend minimum with the measurements by the
time-of-flight method of Ferch et al [48] and by the linear-
transmission method with electrostatic optics by Szmyt-
kowski et al [50].

Only a few theoretical works [15, 16, 20] describe the
integral cross section in the Ramsauer—-Townsend minimum;
for comparison, the theory of Zatsarinny, Bartschat and Allan
[7] is shown in figure 7. Apart from the very low energy limit,
the present MERT coincides within 10% with the R-matrix
relativistic model [7].

Note that the most recent very low-energy experimental
data of Kurokawa et al [3] are lower than the older results and
both of the presented theories at thermal energies. Kitajima
et al [4] analysed these data using the standard version of
MERT. They only obtained a good agreement with the
experiment (below 1eV) when an empirically modified
effective range expansion for the s-wave phase shift proposed
by O’Malley and Crompton [51] was used (see also [35] in
which a comparison between different approaches and the
original MERT is described).

6. Momentum transfer cross sections

Figure 8 shows the momentum transfer cross sections (ot in
equation (6)) calculated against the numerous experimental
data determined from electron swarm experiments [52-56].
The calculations of Zatsarinny et al [7] are also presented for
comparison. Though the agreement is good, a stringent test
for the presented theoretical results is the analysis of the
electron transport coefficients using the Boltzmann transport
equation with derived momentum transfer cross sections as
the input data. The transport coefficient, such as drift velocity,
reduced mobility (uN) and the transverse (Dr/u) and long-
itudinal (DL //4) diffusion coefficients, are measured using the
electron swarm experiments, which are much more accurate
than a typical electron beam technique [1, 57]. Figure 9
presents a two-term analysis of the Boltzmann equation
(using a freely accessible Bolsig+ solver [58]) that considers
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Figure 8. Momentum transfer cross section for elastic e™-Kr
scattering below 10 eV of electron energy. The swarm-derived data
of Koizumi et al [52], England et al [53], Hunter et al [54], Mitroy
[55], Pack et al [56] and Brennan et al [41] are compared with the
present calculations and theory of Zatsarinny et al [7].

the present results (solid line) and those by Zatsarinny et al
[7] (dashed line) as the input data. To include the effects of
the first electronic excitation that appears in the proximity of
10eV, the most recent inelastic cross sections [12] that
describe this process were used. The calculations are com-
pared with experimental results [41, 52, 54, 56, 59-61] up to
10 Td of the reduced electric field (E/N). The agreement of
the present MERT with the experiments is generally good
within the spread of the experimental data in the whole range
of reduced fields for all four swarm parameters. Although
some (small) discrepancies can be noticed at a very low E/N
for the drift velocity and reduced mobility, the same beha-
viour is nevertheless observed when using momentum
transfer cross sections calculated by Zatsarinny, Bartschat and
Allan [7]. Very elaborate comparisons of different cross-
section datasets for electron—krypton collisions in the context
of a swarm coefficients analysis can be found in the recently
published work [1]. The present Boltzmann analysis is prin-
cipally done to show that the effective range parameters are
determined in this work (table 1) and to define the momentum
transfer elastic cross sections with similar accuracy, as more
advanced quantum mechanical calculations have been
recently introduced. Hence, the present semi-empirical model
can be used to parameterize the cross sections in the entire
energy region for elastic scattering.

7. Conclusions

It has been shown that the modified effective theory (MERT)
in the form proposed by Idziaszek and Karwasz [33] can be
used to describe the elastic differential, integral and
momentum transfer cross sections for electron—krypton col-
lisions up to 10¢€V, i.e. the threshold for the first inelastic
process. This proves that electron scattering from Kr is
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Figure 9. Swarm parameters: drift velocity, mobility x gas density (uN ), transverse (DT //4) and longitudinal (D L //4) diffusion coefficients for

elastic e”-Kr scattering below 10 Td of the reduced electric field (E/N). The experimental data of Koizumi ez al/ [52], Hunter et al [54], Pack
et al [56], Bowe [59], Nakamura et al [60] and Al Amin et al [61] are compared with two-term Boltzmann analysis [58] using a momentum
transfer cross section calculated in this work (solid line) and predicted by the theory of Zatsarinny et al [7] (dashed line).

dominated by the long-range polarization potential in the
whole energy range for elastic scattering, while the short-
range effects can be simply included within a frame of
boundary conditions imposed on the wave function, which is
the solution of the Schrodinger equation with pure polariza-
tion potential. Also, it shows that the contribution of the
short-range interaction to the scattering phase shifts of s, p
and d- partial waves can be very well approximated by simple
quadratic expressions.

However, we write in the final that a simple semi-
empirical (geometrical) model, such as MERT, cannot be
treated as a real alternative to the advanced ab initio calcula-
tions. MERT does not take into account all of the aspects of
complex many-body interactions between the incoming elec-
trons and atoms. In particular, it does not include all of the
subtle contributions of spin and relativistic effects. Never-
theless, this model has some major advantages such as a very
intuitive description of low-energy electron—atom collisions;
more practically, it provides a relatively simple relation for the
scattering phase shifts that can be utilized for the para-
meterization of elastic cross sections for different atoms in a
wide energy range. In particular, in this work, it has been
shown that only six parameters of the effective range expan-
sions are sufficient to define cross sections in a large low
energy range for electron—krypton elastic scattering.

Furthermore, the present results indicate that the spin—orbit
interaction and other relativistic effects in the case of elastic
scattering of low-energy electrons from krypton might not be
as significant as we were once led to believe. Finally, the
present results suggest that using MERT as the approach when
it is formulated within the inverse scattering procedure could
be very useful for recovering unknown electron-atom poten-
tials from a set of electron scattering data. For this to take place,
however, more theoretical efforts are needed; in particular, the
physical interpretation of the parameters derived via the
effective range expansions must be understood. It would also
be useful to relate them to other short-range parameters
appearing in some ab initio theories [15, 17].
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