

Positron annihilation

in benzene, aniline and cyclohexane

K. Fedus, A. Karbowski, D. Stolarz, G. P. Karwasz

Institute of Physics

Nicolaus Copernicus University

Toruń, Poland

e-mail: kamil@fizyka.umk.pl

What is it about?

The primary goal of this study is to find any qualitative or quantitative links between single positron-molecule collisions quantified by <u>cross sections</u> measured in a gas phase and <u>annihilation rates</u> measured in condensed phase of matter for large molecules.

Positron direct annihilation vs elastic scattering cross-section

low-pressure noble gases at room temperature

Theoretical data ("many body theory") from D. G. Green, J. A. Ludlow and G. F. Gribakin, Phys. Rev. A 90, 032712 (2014)

Experimental data from:

- P. G. Coleman, T. C. Griffith, G. R. Heyland, and T. L. Killeen, J. Phys. B: At. Mol. Phys. 8, 1734 (1975)
- T. J. Murphy and C. M. Surko, J. Phys. B: At., Mol. Opt. Phys. 23, L727 (1990)
- G. L. Wright, M. Charlton, T. C. Griffith, and G. R. Heyland, J. Phys. B: At. Mol. Phys. 18, 4327 (1985)
- T. C. Griffith and G. R. Heyland, Phys. Rep. C 39, 169 (1978)
- K. Iwata, R. G. Greaves, T. J. Murphy, M. D. Tinkle, and C. M. Surko, Phys. Rev. A 51, 473 (1995)

Positron direct annihilation vs scattering cross-section Two-body interaction with noble gases and simple molecules

$$Z_{eff}(k) = F\left(\frac{R_t^2 + \frac{\sigma_{el}(k)}{4\pi} + \frac{R_t}{k}\sin[2\eta_0(k)]\right)$$

G. F. Gribakin, Phys. Rev. A 61, 022720 (2000)

Subjects of present investigation

Benzene C₆H₆

Dipole polarizabilities:

$$\alpha \approx 70.9 \ [a_0^3]$$

Permanent dipole moments:

$$M \approx 0 [D]$$

Cyclohexane C₆H₁₂

 $\alpha \approx 73.8[a_0^3]$

 $M \approx 0 [D]$

Aniline C₆H₅NH₂

 $\alpha \approx 81.7[a_0^3]$

M ≈ 1.13 [D]

Trento low-energy gas-phase positron beam experiments

G. P. Karwasz, R.S. Brusa, M.Barozzi and A.Zecca, Nuclear Instr. and Methods in Physics B 171, 178 (2000)

Total cross-section for positron scattering from benzene, cyclohexane and aniline in a gas phase

G.P. Karwasz, D. Pliszka, R.S. Brusa, C. Perazzolli, Acta Phys. Pol. 107, 666 (2005)

Total cross-sections in the literature for C_6H_6 , C_6H_{12} and $C_6H_5NH_2$

Extrapolation of total cross-section down to thermal energies by Modified Effective Range Theory (MERT)

(K. Fedus, G. Karwasz, Z. Idziaszek, Phys. Rev. A. 88, 012704 (2013))

Anomalous annihilation rates for large molecules in a gas phase

TABLE VI. Measured values of Z_{eff} for ring molecules, aromatics, and other organic molecules.

Molecule	Formula	Z	$Z_{ m eff}$	$Z_{ m eff}/Z$	DM (D) ^a
Ring hydrocarbons					
Benzene	C_6H_6	42	15000^\dagger	360	0.00
			18000^\dagger	430	0.00
Cyclohexane	$C_{6}H_{12}$	48	20 000 [†]	420	0.00
Cyclodecane	$C_{10}H_{20}$	80	369000^{\dagger}	4 600	0.00
Naphthalene	$C_{10}H_8$	68	494000^{\dagger}	7300	0.00
Decahydronaphthalene	$C_{10}H_{18}$	78	389000^\dagger	5 000	0.00
Anthracene	$C_{14}H_{10}$	94	4 330 000	46 000	0.00

K. Iwata, R. G. Greaves, T. J. Murphy, M. D. Tinkle, and C. M. Surko "Measurements of positron-annihilation rates on molecules" Phys. Rev. A 51 (1995), pp. 473-87.

thermally averaged $\langle Z_{eff} \rangle$ at 300K: $C_6H_6 \sim 15000 < C_6H_{12} \sim 20000$

Positron Annihilation Lifetime (PALS) Measurements in liquid phase at room temperature

ORTEC PALS FAST-FAST COINCIDENCE SYSTEM

PALS results for liquid C₆H₆, C₆H₁₂ and C₆H₅NH₂

MELT and LT10 analysis

 τ_1 - para-positronium and other fast intristic processes

 τ_2 – direct annihilation

 τ_3 - ortho-positronium

PALS results for liquid C₆H₆, C₆H₁₂ and C₆H₅NH₂

 τ_1 - para-positronium and other fast intristic processes

 τ_2 – direct annihilation

 τ_3 - ortho-positronium

Complex behaviour of annihilation rates in condensed matter

New advanced positron chemistry models are needed in order to describe how the multi-body interaction in condesned matter distorts the character of single positron – molecule interaction.

Thank you for your attention

Toruń, Poland

Extrapolation of total cross-section down to thermal energies by Modified Effective Range Theory (MERT)

$$\left[-\frac{1}{2} \frac{d^2}{dr^2} + \frac{l(l+1)}{2r^2} - \frac{\alpha}{2r^4} - V_S(r) - E \right] rR_l(k,r) = 0$$

Scattering on polarization potential

Mathieu differential equation:

$$\left[\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} + \frac{(R^*)^2}{r^4} + k^2 \right] \Phi_l(r) = 0$$

 $R^* = \sqrt{\alpha}$ - characteristic range of r^4 interaction

T. F. O'Malley et al. J. Math. Phys. 2, 491 (1961)

Behavior of the solution at large r

$$\Phi_l(r) \underset{r \to \infty}{\sim} \sin\left(kr - \frac{1}{2}l\pi + \frac{\eta_l}{\eta_l}\right)$$

total phase shift: η_{I}

Behavior of the solution at small *r*

$$\Phi_l(r) \sim r \sin(R^*/r + \phi_l)$$

short-range phase: ϕ_l

Z. Idziaszek and G. Karwasz, Phys. Rev. A 73, 064701 (2006)

Scattering phase shift

$$\tan \eta_l = \frac{m_l^2 - \tan^2 \delta_l + \tan \left(\phi_l + l \pi/2\right) \tan \delta_l \left(m_l^2 - 1\right)}{\tan \delta_l \left(1 - m_l^2\right) + \tan \left(\phi_l + l \pi/2\right) \left(1 - m_l^2 \tan^2 \delta_l\right)}$$

$$\frac{m_l = m_l(E, \alpha)}{\delta_l = \delta_l(E, \alpha)}$$
 determined from analytical properties of Mathieu functions (tabulated)

Z. Idziaszek and G. Karwasz, Phys. Rev. A 73, 064701 (2006)

K. Fedus et al., Phys. Rev A 88, 012704 (2013)

Short-range contribution:

$$\tan(\phi_l + l\pi/2) \approx B_l + R_l R^* k^2 / 2 + ...$$

the effective range expansions

short-range effects R^* $\sim R_l$ polarization effects $V(r) \sim -\frac{\alpha e^2}{2r^4}$

 $B_{\it l}$ – the zero energy contribution of short-range effects

 R_l – the effective range of short-range effects

Extrapolation of total cross-section down to thermal energies by Modified Effective Range Theory (MERT)

K. Fedus, G. Karwasz, Z. Idziaszek, Phys. Rev. A. 88, 012704 (2013)

Fit to Z_{eff} data

Z_{eff} from D. G. Green, J. A. Ludlow, and G. F. Gribakin, Phys. Rev. A 90, 032712 (2014)

Positron direct annihilation vs elastic scattering cross-section

Simple molecular target: N₂

- G.P. Karwasz, D. Pliszka, R.S. Brusa, Nucl. Instr. Meth. B, 247, 68 (2006)
- J. W. Darewych and P. Baille, J. Phys. B: Atom. Molec. Phys. 7 (1974)
- P.A. Fraser, Adv. atom. molec. Phys. (New York Academic Press) 4 63-107 (1968)

FIG. 1. (a) $Z_{\rm eff}$ spectrum [5]; and (b) infrared absorption spectrum (log scale, arbitrary units) [12] for hexane. Note that, when the 80 meV downshift of the $Z_{\rm eff}$ spectrum due to the positron-hexane binding energy is taken into account, the strong peaks in the two spectra occur at the same energy.