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Abstract. New experiments on the very low-energy electron and
positron scattering allow to verify the old question on applicability
of modified effective range theory (MERT). We perform it using an
analytical solution of the Schrödinger equation with the long-range po-
larization potential. In this work two atomic (He, Ar) and molecular
(H2, CH4) target are studied using this approach. Total cross sections
were used for obtaining parameters characterizing the scattering phase
shifts related to the short-range interaction potential; differential cross
sections were used for comparison. Differently from previous works, we
conclude that MERT with few (2-3) partial waves applies very well
up to energies of few eV in all four targets studied. For positrons,
reliable experimental data indicate occurrence of zeros in the s-wave
phase shifts for all four targets. This should be recognized as Ramsauer-
Townsend minima.

1 Introduction

The modified effective range theory (MERT) for positron and electron scattering has
been proposed half a century ago [1,2]. It was frequently used [3] to extrapolate
experimental cross sections down to zero energy in series of the wavevector k powers.
In an extensive study [4] it was shown that MERT series can be applied only in the
very low energy range (below 1 eV in noble gases).
In [5,6] we proposed a different approach to MERT: the scattering phase shifts

were obtained using Mathieu’s functions, the analytical solutions of the Schrdinger
equation with the long-range polarization potential. Whereas the effective range ex-
pansion (series of k) was introduced exclusively for a short-range part of the inter-
action potential. Such approach allowed to extend the applicability of MERT up to
few eV. At present we use this alternative MERT to perform an extensive analysis
of electron and positron scattering on light atomic and molecular targets (He, H2,
Ar, CH4) using different sets of total cross sections (TCS). Argon (Ar) and methane
(CH4) show Ramsauer-Townsend (R-T) minimum for electron scattering [7,8]. While
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for positrons all four targets show a rise of TCS in the zero-energy limit but the
existence of R-T minimum was not clear so far [9].

2 Modified effective range theory

We start with the radial part of the Schrödinger equation describing the relative
motion of the particle in the polarization potential field

[
d2

dr2
− l(l + 1)

r2
+
(R∗)2

r4
+
2µE

!2

]
Ψl(r) = 0, (1)

where Ψl(r) denotes the radial wave function, l is the angular momentum quantum
number and E is the relative energy of the particle. For convenience we introduce some
characteristic units R∗ and E∗, where R∗ ≡

√
αe2 µ/!2 denotes the characteristic

length of the r−4 potential, and E∗ = !2/(2µR∗2) is the characteristic energy. Here
α is the polarizability of the target, e is the elementary charge, µ is the reduced mass
and ! is the Planck constant. The Schrödinger equation (1) can be transformed into
Mathieu’s differential equation of the imaginary argument and solved analytically
[1,2,5,6]. For r ≪ R∗, when the polarization potential dominates over centrifugal
potential and the constant energy term, behavior of Ψl(r) is given by

Ψl(r)
r→0∼ r sin

(
R∗

r
+ φl

)
, (2)

where φl is a short-range phase, which is determined by the short-range part of
the interaction potential. For E = 0 and l = 0 the solution (2) becomes exact at all
distances, and from its asymptotic behavior at large distances one can easily determine
the value of the s-wave scattering length

A = −R∗ cot(φ0). (3)

At large distances: r ≫ R∗, Ψl(r) must take the form of the scattered wave

Ψl(r)
r→∞∼ sin

(
kr − lπ

2
+ ηl
)
, (4)

where k =
√
2µE/!. Using the analytical solutions one can find the following relation

between the phase shift ηl and the short range phase φl [1,2]

tan ηl =
m2 − tan δ2l +B tan δl(m2 − 1)
tan δl(1−m2) +B(1−m2 tan2 δl)

, (5)

where δl =
π
2 (ν − l −

1
2 ), B = tan(φl + lπ/2), and m and ν are parameters, that are

determined from the analytical solutions of the Mathieu’s differential equation [5].
The parameters φl entering the asymptotic formula (2), depend on energy, and can

be expanded in powers of k. In our case it is more covenient to expand tan(φl + l
π
2 ),

entering formula (5):

tan
(
φl + l

π

2

)
= Bl +

1

2
R∗Rlk

2 + . . . , (6)

where Bl ≡ tan(φl + l π2 )|k=0. In the particular case of l = 0, B0 can be expressed in
terms of s-wave scattering length as: B0 = −R∗/A. The lowest order correction in k
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is quadratic, and can be interpreted as an effective range Rl for the partial wave l
[1,2].
Previous MERT approach used approximate formulae for the s, p and d-wave

phase shifts (ηl) [1,2,4]. At present we use an exact expression (5) for few first partial
waves with the short-range phase shift (φl) expanded according to (6). The number
of partial waves necessary to be treated by (5) can be estimated by comparing the
energy of particle with the height of the centrifugal barrier Emax(l) =

1
4E
∗l2(l + 1)2

for r−4 interaction [10]. The particle can penetrate the inner (short-range) part
of the potential only when E > Emax(l). In most cases, the elastic TCS can be
describe considering only the contribution of s and p-wave and sometimes also
d-wave phase shits. The small phase shifts related to the higher partial waves, which
can not overcome the repulsion of centrifugal barrier, can be taken into account using
a following expression [1]

tan ηl =
πq2

8(l − 12 )(l +
1
2 )(l +

3
2 )
+O(k4). (7)

This expression, valid for l ≥ 1, is exact in the low-energy limit and this result can
be also reproduced using the first-order Born approximation.

3 Positron experiments

Positrons constitute an alternative probe to electron scattering [11] – no exchange
interaction acts for them. For electron TCS a good agreement exists (see [7,8,12,
13]) while experiments on positron scattering date only to 70’ies of last century and
are tedious. Early experiments from WSU Detroit [9] used a long (109 cm), curved
scattering cell and a weak guiding magnetic field. The energy resolution was good
(probably 0.1–0.2 eV) but the angular resolution was only moderate (in the range
10–20◦). As shown by Buckman and collaborators [14] for Ar, the Detroit data can
be brought qualitatively into agreement in the low energy limit with the recent TCS
from Canberra [15] if a correction (by some +20◦) is done. The recently developed
Canberra apparatus [14,15] uses a strong magnetic field (500G) so TCS have to be
deconvoluted extrapolating the signal to the zero field.
Another early set-up, from Tokyo University [16] used a low magnetic field (3.6–

27G), 7 cm long scattering cell but wide (6–9mm diameter) apertures. As a con-
sequence the measured TCSs were underestimated in the low energy limit. As we
showed in detailed analysis for benzene [17] and N2 [18] those data can be brought
into agreement with recent experiments if a correction for the angular resolution is
performed.
The apparatus developed originally at Trento University [18] used 10 cm-long scat-

tering cell length but narrow (1.5mm diameter) apertures; the guiding field was about
9G and the angular resolution error was negligible. The new configuration of the
Trento apparatus [19] uses short (2.4 cm) cell and low counting rate (about 1 e+/s).
However data [19] for H2 obtained with this apparatus disagree with other experi-
ments and recent theories, see [20]. The same machine was used in CH4 [21].

4 MERT results

4.1 Helium

The low polarizability (α = 1.407 a30 [22]) provides relatively high effective
energy E∗ = 9.671 eV. Therefore the d-wave needs a high energy of at least
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Table 1. MERT fitting parameters: A = −R∗/B0 (s-wave scattering length), B1 (zero-
energy contribution for p-wave), R0 (s-wave effective range), and R1 (p-wave effective range)
for electron and positron scattering on hellium.

A(a0) B1 R0(a0) R1(a0)
e−+ He (Buckman) 1.186 −20 0.01 −100
e++ He (Sullivan) −0.45 −0.05 −1.54 −0.78
e++ He (Karwasz) −0.59 −1.29 −0.28 1.16
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Fig. 1. Total cross sections for (a) electron and (b) positron scattering on helium. Experi-
mental data are from Buckman et al. [23], Sullivan et al. [28] and Karwasz et al. [29]. In (b)
the partial waves contribution is shown only for the data of Sullivan [28].

Emax(l = 2) ≈ 87 eV to overcome the repulsion of the centrifugal barrier. Thus only
two partial waves, s and p, are sufficient to explain TCS in whole energy range for
elastic scattering of electrons (E < 20 eV) and positrons (E < 15 eV). The fitting was
performed using unweighted least-square method; results for TCS are shown in Table 1
and Fig. 1.
For electron scattering TCS data of Buckman et al. [23] were used in current

MERT analysis. The overwhelming contribution comes from the s-wave up to 20 eV.
The derived scattering length A (numerically equal here to R∗) stays in a perfect
accord with other experimental and theoretical results, see for example [7] and ref-
erences therein. To validate our approach the parameters from Table 1 were used to
calculate elastic differential cross sections (DCS). The comparison of calculations with
some experimental results is shown in Fig. 2. The agreement in the whole 1.5–20 eV
is to be judged as excellent.
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Fig. 2. Differential cross section versus the scattering angle at (a) 5 eV and (b) 20 eV for
electron scattering on helium. Experimental data are from Andrick et al. [24], Shyn [25],
Register et al. [26] and Brunger et al. [27].

For positrons, the agreement between MERT coefficients derivied using TCS
datasets of Jones et al. [28] and Karwasz et al. [29] is rather poor. Nevertheless both
MERT fits indicate the presence of R-T minimum, at 2 eV and 3.2 eV, respectively.

4.2 Argon

Argon is a target with much higher polarizability (α = 11.23 a30 [22]) than helium.
Hence it is necessery to include d-wave phase shifts using equation (5) in order to
find a good fitting to experimental TCS data describing electron elastic scattering
(energies E ≤ 10 eV). Whereas for positrons, still only s and p waves are sufficient to
reconstruct experimental TCS for energies below the positronium formation treshold
(E ≤ 5 eV). The results of fitting and derived MERT parameters are given in Fig. 3
and Table 2, respectively.
There is a very good agreement between MERT parameters calculated using the

electron TCS data of Buckamn et al. [23] and Ferch et al. [3]. Moreover we have
chacked that the obtained scattering phase shifts for s, p and d waves agree very well
for those given in Ref. [30] and further, calculated momentum transfer cross sections
(MTCS) agrees fairly with swarm-derived ones from Ref. [31].
For positrons, two experimental datasets of Karwasz et al. [32] and Jones et al.

[15] were used in the analysis. Obtained s-wave scattering lengths (see Table 2) stay in
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Fig. 3. Total cross sections for (a) electron and (b) positron scattering on helium. Exper-
imental data are from Buckman et al. [23], Ferch et al. [3], Jones et al. [15] and Karwasz
et al. [32]. The partial waves contributions are shown only for the data of Buckman [23] and
Karwasz [32].

Table 2. MERT fitting parameters for argon.

A(a0) B1 B2 R0(a0) R1(a0) R2(a0)
e−+ Ar (Buckman) −1.51 −0.44 0.21 −0.38 0.06 0.30
e−+ Ar (Ferch) −1.50 −0.49 0.27 −0.40 0.10 0.36
e++ Ar (Karwasz) −5.52 −3.82 — 0.71 3.19 —
e++ He (Jones) −4.11 −3.67 — −1.47 1.97 —

agreement with other published results spanning the range of −2.8 a0 to −5.3 a0 (see
[33] and references therein). However the existence of the R-T minimum is indicated
only by the fit to data of Karwasz et al. and we have chacked that the derived scatter-
ing phase-shifts on the basis of this experiment are in good accord with the theoretical
results of McEachran et al. [34] obtained within the polarized-orbital approximation.

4.3 Molecular hydrogen

In molecular hydrogen the polarizability is α = 5.314 a30 [22]. As a result the d-
wave contribution is small compared to s and p waves for energies E < 10 eV, both
for electrons and positrons. In Fig. 4(a) we compare the present MERT fit with
recommended TCS [13] for electrons. The agreement using only two partial waves is
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Fig. 4. Total cross sections for (a) electron and (b) positron scattering on molecular
hydrogen. Recommended data for electrons are from [13]. Positron experimental data are
from Hoffman et al. [35], Karwasz et al. [32] and Zecca et al. [19]. In (b) the partial waves
contribution is shown only for the data of Karwasz.

Table 3. MERT fitting parameters for molecular hydrogen.

A(a0) B1 R0(a0) R1(a0)
e−+ H2 (Landolt-Bornstein) 1.30 0.38 −0.90 1.75
e++ H2 (Karwasz) −3.13 −1.99 −0.12 −0.90
e++ H2 (Hoffman) −2.51 −1.94 0.29 −2.51

very good. The s-wave contribution dominates up to about 1 eV; at the cross sections
maximum (3-4 eV) both the s-wave and p-wave are important.
For positrons, MERT fits to the pioneer data of Hoffman et al. [35] and more

recent experiment of Trento [32] give quite similar results for parameters describing
the zero-energy contribution of s- and p-waves (see A and B1 in Table 3). Both sets
indicate also the existence of R-T minimum. No reasonable four-parameter fit was
possible for the data from Ref. [19] (see Fig. 4(b)) obtained with new configuration
of Trento apparatus.

4.4 Methane

In MERT calculations for CH4 we used the value of polarizability α = 19.0 a30
suggested by Ref. [36]. Such high value provides very low E∗ = 0.72 eV and
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Fig. 5. Total cross sections for (a) electron and (b) positron scattering on methane. Ex-
perimental data are from Ferch et al. [37], Lohmann and Buckman [38], Sueoka et al. [39],
Dababneh et al. [40] and Zecca et al. [21].

Table 4. MERT fitting parameters for methane.

A(a0) B1 R0(a0) R1(a0)
e−+ CH4 (Ferch) −2.76 −0.68 −0.34 0.36
e−+ CH4 (Lohmann) −2.69 −0.67 −0.85 0.50
e++ CH4 (Sueoka) −5.65 −2.82 −1.22 −3.05
e++ CH4 (Dababneh) −8.55 −2.44 −0.25 −4.49

Emax(l = 2) ≈ 6.45 eV. Moreover, in order to obtain integral elastic cross sections
the vibrational excitation, which constitutes about 30% of TCS at 0.4 eV, has to be
subtracted. We used vibrational cross sections derived from swarm drift coefficient
[36].
In this work we limit our MERT analysis to energies E ≤ 2 eV where the chosen

vibrational excitation cross section data are available. We found that in this energy
range only two partial waves are sufficient to reconstruct exprimental TCS for elec-
trons given in Ref. [37] and [38]. MERT coefficients derivied from both sets (see
Table 4) are in very good agreement. Moreover these two sets give similar minima in
MTSC of about 0.3× 10−20 m2 at 0.3 eV (not shown).
For positrons, the Tokyo [39] and Detroit [40] data give very similar MERT para-

maters for the p-wave (i.e. B1 and R1) but as far as only data of Ref. [40] give a zero
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in the s-wave shift (i.e. the true R-T minimum), the data from Ref. [39] show only a
minimum in this shift (not shown in Fig. 5). Again, no four-parameter fit worked for
the data Ref. [21] obatined with new configuretion of Trento apparatus.

5 Conclusions

In this work we showed the applicability of modified effective range theory (MERT)
for modeling electron and positron elastic scattering cross sections in a wide variety
of different atoms and non-polar molecules. Using only few partial waves within the
potential barrier of the targets it is possible to reproduce integral, differential and
momentum transfer cross sections being in very good agreement with some avail-
able experimental results. In particular case of positron scattering, we showed that
the current model predicts the Ramsauer-Townsend minimum for all studied targets.
These results present the potential of MERT to parameterize scattering phase-shifts
from zero energy up to a threshold of the first inelastic channel using only few coef-
ficients of the effective range expansion. However the effective-range parameters can
be strongly affected by measurement uncertainties of the experimental data. Hence
more measurements in the low-energy domain are needed in order to get final reliable
parameterization.
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