

Reflection of Light for Metals (cont.)

- ____ = I_R/I_0 is between 0.90 and 0.95.
- Metal surfaces appear ____
- Most of absorbed light is reflected at the same wavelength
- · Small fraction of light may be absorbed
- Color of reflected light depends on wavelength distribution
 - Example: The metals ______ absorb light in blue and green => reflected light has gold color

Continuous Wave Lasers

- Continuous wave (CW) lasers generate a continuous (rather •
- than pulsed) beam Materials for CW lasers include semiconductors (e.g., GaAs), gases (e.g., CO₂), and
- Wavelengths for laser beams are within visible and infrared regions of the _
- Uses of CW lasers
 - 1.
 - Drilling 2.
 - Cutting laser carved wood, eye surgery
 Surface treatment
 Scribing ceramics, etc.

 - 6. Photolithography Excimer laser

Semiconductor Laser Applications

- Compact disk (CD) player
 Use _____ light
- High resolution DVD players
 - Use _____ light
 - Blue light is a shorter wavelength than red light so it produces higher storage density
- Communications using ______
 Fibers often tuned to a specific frequency
- Banks of semiconductor lasers are used as flash lamps
- to pump other lasers

SUMMARY

- Light radiation impinging on a material may be reflected from, absorbed within, and/or transmitted through
- · Light transmission characteristics:
- -- transparent, translucent, opaque
 Optical properties of metals:
 -- opaque and highly reflective due to electron energy band
 structure. • Optical properties of non-Metals:
- Optical properties of non-intefals:
 -- for E_{gap} < 1.8 eV, absorption of all wavelengths of light radiation
 -- for E_{gap} > 3.1 eV, no absorption of visible light radiation
 -- for 1.8 eV < E_{gap} < 3.1 eV, absorption of some range of light radiation wavelengths
 -- color determined by wavelength distribution of transmitted light
 Other important optical applications/devices:
- -- luminescence, photoconductivity, light-emitting diodes, solar cells, lasers, and optical fibers