Chapter 6: Mechanical Properties

ISSUES TO ADDRESS...

- Stress and strain: What are they and why are they used instead of _____ and deformation?
- Elastic behavior: When loads are _____, how much deformation occurs? What materials deform least?
- behavior: At what point does permanent deformation occur? What materials are most resistant to permanent deformation?
- Toughness and ______: What are they and how do we measure them?

Hardness: Measurement
Rockwell
No major sample
 Each scale runs to 130 but only useful in range
 – Minor load 10 kg
– Major load 60 (A), 100 (B) & 150 (C) kg
• A = diamond, B = 1/16 in. ball, C = diamond
• HB = Hardness
− TS (psia) = 500 x HB
– TS (MPa) = 3.45 x HB
Chapter 6 - 27

Variability in Material Properties

- Elastic _____ is material property
- Critical properties depend largely on sample flaws (defects, etc.). Large sample to sample variability.
- Mean

$$\overline{X} = \frac{\sum_{n=0}^{n} X_{n}}{n}$$

______ S =

where n is the number of data points

Chapter 6 - 31

Design or Safety Factors

- Design ____ mean we do not push the limit.
- Factor of _____, $\frac{N}{N}$ Often N is between 1.2 and 4
- Example: Calculate a diameter, d, to ensure that yield does not occur in the _____ carbon steel rod below. Use a factor of _____ of 5.

Summary

- Stress and strain: These are size-independent measures of load and displacement, respectively.
- Elastic behavior: This reversible behavior often shows a linear relation between stress and strain.
 To minimize deformation, select a material with a large elastic modulus (E or G).
- Plastic behavior: This permanent deformation behavior occurs when the tensile (or compressive) uniaxial stress reaches σ_y .
- Toughness: The energy needed to break a unit volume of material.
- Ductility: The plastic strain at failure.

