Introduction to Materials Science & Engineering

Course Objective...

Introduce fundamental concepts in Materials Science

You will learn about:

- · material structure
- · how structure dictates properties
- · how processing can change structure

This course will help you to:

- · use materials properly
- · realize new design opportunities with materials

COURSE MATERIALS (with WileyPLUS)

Required text:

"WileyPLUS for Materials Science and Engineering: An Introduction, W.D. Callister, Jr. and D.G. Rethwisch, 8th edition, John Wiley and Sons, Inc. (2010).

Website: http://www.wileyplus.com/xxxxxxxxxx

- Can be bought online at wileyplus.com for 40% of textbook price
 - Includes complete online version of textbook
- Or comes bundled with textbook at bookstore
 - \$5 more than textbook alone
- Homework assignments with instant feedback and hints
- Computer graded self-help problems
- Hotlinks in homework to supporting text section
- Quizzes

WEBSITES

Text Website: http://www.wiley.com/college/callister

- VMSE for 3D visualization and manipulation of atomic structures
- Mechanical Engineering and Biomaterials online support modules
- · Case studies of materials usage
- Extended learning objectives
- · Self-assessment exercises

		(**)
1 -	3	(A)

Virtual Materials Science & Engineering (VMSE)

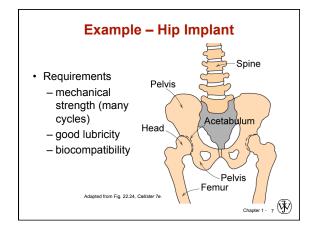
Website: http://www.wileyplus.com/college/callister Student Companion Site

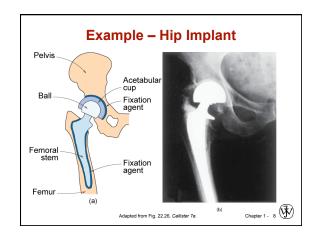
- Users can manipulate molecules and crystals to better visualize atomic structures
 - Unit cells such as BCC, FCC, HCP
 - Crystallographic planes, directions, and defects
 - Polymer repeat units and molecules
- Diffusion computations

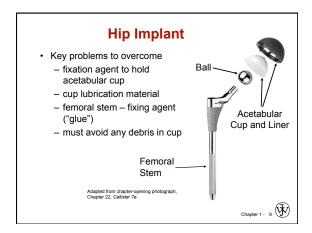
Chapter 1 - Introduction

- · What is materials science?
- · Why should we know about it?
- · Materials drive our society
 - Stone Age
 - Bronze Age
 - Iron Age
 - Iron AgeNow?
 - Silicon Age?
 - Polymer Age?

Example – Hip Implant


With age or certain illnesses joints deteriorate.
 Particularly those with large loads (such as hip).



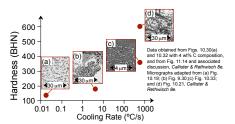


Adapted from Fig. 22.25, Callister 7e.

Example - Develop New Types of Polymers

Commodity plastics – large volume ca. \$0.50 / lb
 Ex. Polyethylene Polypropylene Polystyrene etc.

• Engineering Resins – small volume > \$1.00 / lb Ex. Polycarbonate


Nylon Polysulfone etc.

Can polypropylene be "upgraded" to properties (and price) near those of engineering resins?

Structure, Processing, & Properties

Properties depend on structure ex: hardness vs structure of steel

· Processing can change structure ex: structure vs cooling rate of steel

Types of Materials

- Metals:

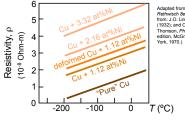
 - Strong, ductileHigh thermal & electrical conductivity
 - Opaque, reflective.
- Polymers/plastics: Covalent bonding → sharing of e's
 Soft, ductile, low strength, low density
 Thermal & electrical insulators

 - Optically translucent or transparent.
- Ceramics: ionic bonding (refractory) compounds of metallic & non-metallic elements (oxides, carbides, nitrides, sulfides)

 Brittle, glassy, elastic

 Non-conducting (insulators)

The Materials Selection Process


- 1. Pick Application --> Determine required Properties Properties: mechanical, electrical, thermal, magnetic, optical, deteriorative.
- 2. Properties → Identify candidate Material(s) Material: structure, composition.
- 3. Material --- Identify required Processing

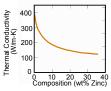
Processing: changes *structure* and overall *shape* ex: casting, sintering, vapor deposition, doping forming, joining, annealing.

ELECTRICAL

• Electrical Resistivity of Copper:

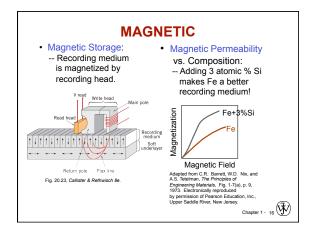
- · Adding "impurity" atoms to Cu increases resistivity.
- Deforming Cu increases resistivity.

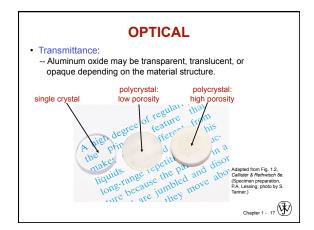
THERMAL

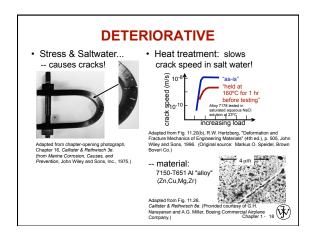

- · Space Shuttle Tiles: -- Silica fiber insulation
- offers low heat conduction.

-100 μm-

- Thermal Conductivity of Copper:
 - -- It decreases when you add zinc!




Adapted from Fig. 19.4, Callister & Rethwisch. 8e. (Fig. 19.4 is adapted from Metals Handbo Properties and Selection: Monterous alloys a Pure Metals, Vol. 2, 9th ed., H. Baker, (Managing Editor), American Society for Meta



SUMMARY

Course Goals:

- Use the right material for the job.
- Understand the relation between properties, structure, and processing.
- Recognize new design opportunities offered by materials selection.