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Abstract
The subject of uncertainties (sometimes called errors) is traditionally taught
(to first-year science undergraduates) towards the end of a course on statistics
that defines probability as the limit of many trials, and discusses probability
distribution functions and the Gaussian distribution. We show how to
introduce students to the concepts of uncertainty based on the idea of degree
of belief. This enables them to move on more quickly to the important
problems actually met in laboratory work, namely the estimation of
uncertainties and their propagation. We also consider the mean and the
weighted mean of several results and the method of least squares.

Introduction
Many students find the subject of measurement
errors (more meaningfully called uncertainties)
difficult and confusing. We suggest why this is so
and make some suggestions.

Errors and uncertainty

First of all, the word error is itself confusing
because it has at least three meanings. Often it
means a mistake, as in ‘I made an error; I omitted
the factor 2π to convert from frequency to angular
frequency’. Secondly, it often means a difference.
Having measured g as 9.814 ± 0.003 m s−2 and
found a book value to be 9.816, one says ‘The
error of my result is 0.002 m s−2’. Lastly, it often
means uncertainty. ‘The error on my value of
g is ± 0.003’. So the first step in reducing the
confusion, and helping students to learn, is to not
use the word error, but to be more explicit. In the
literature there seems to have been a slow drift to
using the word uncertainty where previously the
word error (meaning uncertainty) had been used.
The statement that g = 9.814 ± 0.003 m s−2

means that the uncertainty is ± 0.003 and that
we are 68% sure that the true value lies between
9.811 and 9.817. This article is concerned with
uncertainties.

Traditional teaching

Many students are introduced to the notions
of uncertainty that are needed for laboratory
work by first being presented with a course on
statistics. This typically covers probability as
the limit of many trials, then the distributions of
measurements, that these are Gaussian, evaluation
of the mean, and evaluation of the standard
deviation and the standard deviation of the mean.
Laboratory measurements are seen as a small
sample of an underlying Gaussian distribution
and the spread is in some way caused by a
host of small uncontrollable random effects. The
uncertainty may be estimated from the spread of
the measurements. Some workers argue that the
spread, the uncertainty of the measurement, is
intrinsic to the equipment, and/or to the technique,
just as the true value is there to be measured.
Others point out that the uncertainty of the
measurement should also include variations due
to the skill of the experimenter. Faced with this
build up, students shy away from uncertainties,
thinking they are about nasty summation signs
(with infinite limits) and probability distribution
functions (pdfs). This approach has several other
weaknesses.
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It would be helpful if students could be shown
the distribution of a large set of measurements of
the same thing taken by the same experimenter
under (supposedly) identical conditions that
illustrated the Gaussian distribution. How about
100 measurements of the mass of a marble or
of the time of 10 swings of a pendulum? In
many cases the distribution does not look at
all Gaussian. Consider reading the temperature
from a digital thermometer and getting 25.2 ◦C
time and time again with no change. For
better or worse, text books and lecture courses
very rarely show real data that illustrate the
Gaussian distribution. We take here the practical
point of view that the distributions are often not
Gaussian at all. After all, digital instruments
may give distributions containing only one or two
values; counting experiments, such as rates from
radioactive sources, give Poisson distributions;
and dice throwing experiments give binomial
distributions.

A search of the literature threw up few
examples. In one, see [1] (in fact one that
comes close to presenting convincing data), a
histogram is presented of 174 measurements of
the outer radius of a cylindrical annulus—taken
by 174 students. The distribution is consistent
with a Gaussian, but other distributions cannot
be excluded. Surely the differing skills of the
experimenters contributes to the spread, and as
no details are given one suspects that the annulus
may be elliptical, and different radii are being
measured. This hardly supports the classical
picture of many small random effects combining
to give the uncertainty.

In practice it is easier to obtain distributions
that look Gaussian by evaluating a quantity that
depends on several measurements. For instance,
see [1], the distribution of the volume of the
annulus (obtained from measurements of the inner
radius, outer radius, and length) may appear
Gaussian. Of course here the central limit theorem
is coming into play.

The discussions tend to concentrate on
random uncertainties, but surely systematic effects
must come into the description too. The inclusion
of uncertainty due to any unknown systematic
effects is often glossed over. How well was the
voltmeter calibrated?

The subject of measurement uncertainties
(then called errors) was developed in an era of ana-
logue instruments: mercury in glass thermometers,

moving coil voltmeters with needles and dials,
metre rules, hand-held mechanical stop watches,
cathode-ray tube displays, . . .. In such a world, the
concept of many small unknown random contribu-
tions giving rise to a Gaussian distribution by way
of the central limit theorem seemed quite sensible.
However, technology has moved on, and instru-
mentation is now dominated by digital techniques.
The experimenter is generally more remote from
the raw measurement. He is more of an observer
and sees a digital display. The data may have been
digitally processed in sophisticated ways (for in-
stance they may have already averaged over sev-
eral samples). As far as the experimenter is con-
cerned, the uncertainty of the measurement is not
obtained by considering the basic technique, but
is determined by the instrument manufacturer, and
estimating uncertainty is a matter of reading the
specification and having confidence in the equip-
ment.

Uncertainty as degree of belief
The purpose of this article is to present an alter-
native approach to teaching uncertainties. Our ap-
proach is conceptually much simpler, less math-
ematical, and more general. It enables students
to estimate uncertainties sensibly, overcome their
reluctance to consider uncertainties, and to move
on quickly to other important and essential exper-
imental issues such as propagating the uncertain-
ties.

We ignore all the statistics, means, standard
deviations, Gaussians, etc, and give a simple
description of what we mean by uncertainty. It
would be too presumptuous to call it a definition.

The essential points are that we want to
specify a range in which we think the true value
lies, i.e. to quote x ± σx . We could try
for a range corresponding to complete certainty,
but in scientific measurements we can never be
absolutely sure, so that is not realistic. So we want
a statement of the form—‘I am S% sure that the
true value lies in the range x − σx to x + σx ’. The
emphasis here is on being S% sure, implying that
I think there is a (100 − S)% chance that the true
value is outside the range. All this amounts to a
‘degree of belief’. We find that students have no
problem with this approach. Indeed it is in line
with the ISO guidelines [2].

We now ask what would be a sensible value
for S, the degree of belief? The ISO guidelines
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imply that you can choose any value. They use the
term coverage. Choose it according to the nature
and details of the measurement. They recommend
using the symbol u for the uncertainty. An obvious
choice is to take S = 50%, and this is indeed
perfectly sensible. In the scientific community
there is a strong preference for standardizing on
the value S � 68% (which in practice can be
taken as two thirds) because with this particular
value the uncertainty is the same as the root mean
square (rms) deviation (in cases where there is
a large sample). If the underlying distribution
of (repeated) measurements is in fact Gaussian,
then the uncertainty defined in this way is the
rms width parameter of the Gaussian. This is
also called the SD (standard deviation). Using
S � 68% does not imply that the distribution
is in fact Gaussian. But there is an inevitable
association in people’s minds. Of course the
concept of an underlying distribution is not strictly
speaking logically consistent with the concept of
a measurement that is done once. We should
also point out that relating the range for 95% sure
with that for 68% sure (see section ‘Estimating
an uncertainty’) does make an assumption about
the shape of the distribution. One might consider
using u for uncertainties corresponding to an
arbitrary range, and using σ for the specific case
of 68%.

Concepts of probability
Students are quite happy with the basic concept of
probability. The probability is 1/6 that a die falls
displaying 4. The probability of drawing a king
from a pack of cards is 4/52. An extension is to
plot a histogram of the frequency or probability
of drawing a ball of a given colour from a bag
containing 12 red balls, 10 blue, 5 yellow, and 13
green. These cause no problems.

They are also content with statements such as
‘The probability that it will rain tomorrow is 50%’
and ‘There is a 1/365 probability that it’s Jack’s
birthday today’. (This even though the statement
‘It is Jack’s birthday today’ is either true or false.)

When confronted with ‘The result of your
measurement is 4.3 V. How well do you believe
your value?’ they do not question the phrase
‘believe your value’. They respond (perhaps after
some thought): ‘Well it could be out by say
± 0.2 V, so I would say there is a 50% chance

(i.e. probability) that the true value is between 4.1
and 4.5 V’.

The above are different examples of the
concept of probability—the examples of the die,
cards, and balls might be termed propensity, and
the others Bayesian. There are other concepts
of probability including a formal mathematical
definition and the classical (also called frequentist)
concept (see below). Much has been written and
discussions continue on the different concepts of
probability and on their merits and difficulties.
It is not the purpose of this article to advocate
any of the concepts over another, but to observe
that students are familiar with the ideas mentioned
above, even though they may not be altogether
logically consistent. We also note that some people
do take strong positions and favour one particular
concept.

The classical or frequentist definition of
probability is given by the fraction of trials that
are deemed successful, in the limit of an infinite
number of trials:

P = lim
N→∞

Ns

N
, (1)

where N is the number of trials and Ns is the
number that are successful.

Strictly speaking, the true value has a fixed
value in the frequentist viewpoint. So the notion
that there is a probability that the true value lies
between some limits is illogical. However, few
people balk at such statements—for instance the
statement at the end of the section ‘Errors and
uncertainty’.

This concept is often taught in a course
on statistics and precedes the introduction of
uncertainties, their estimation, and propagation.
We suggest that uncertainty (as needed for
laboratory work) does not need this material. It
is better to build on the more general concept
of probability that students already have, namely
degree of belief, and to move on to the more
relevant topics of estimation and propagation.

Estimating an uncertainty
We consider raw measurements. The traditional
approach encourages students to estimate uncer-
tainties by imagining what would happen if the
measurement were to be repeated many times.
They expect the measurements to have a spread,
for this to be Gaussian, and the root mean square
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width to be the required uncertainty. This is quite
a challenge! It emphasizes random uncertainties
and tends to ignore systematic ones. Relating the
uncertainty to a degree of belief opens up other
more fruitful ways. A simple and effective tech-
nique is to zoom in and out. Suppose the length of
a sheet of paper is measured as 296.7 mm. Ask
‘Do you believe this to ±10 mm, ±5, ±2, ±1,
±0.5, ±0.2, ±0.1, ±0.05, ±0.02, ±0.01, . . .?’
Usually this pins down the uncertainty to a fac-
tor of about 2 or so, and this is often all that is
needed. It is implicit that we are talking about a
2/3 certainty (68%) for the range. Another use-
ful method is to ask ‘Over what range are you al-
most certain the true value must lie?’ Taking ‘al-
most certain’ to correspond to 95% certainty, the
range corresponds to four times the uncertainty.
(This correspondence makes an assumption about
the probability distribution function.) If other stu-
dents are doing similar experiments, a useful way
to assess the degree of belief is to ask (for instance)
‘If they got 297.2 mm, would you accept that as
being within the claimed accuracy or would you
challenge them?’

Notice that these techniques encourage the
inclusion of systematic effects (as well as
random ones) right from the beginning. They
also demonstrate that knowing the value of
an uncertainty to a factor 2 is already very
useful. Indeed, it is rarely meaningful to give
an uncertainty to better than 10% (of itself), and
there are few instances where the uncertainty is
meaningful to better than 1% (of itself). So
quoting an uncertainty to more than two or three
significant figures shows a lack of understanding.

Propagation of uncertainties
Students are mystified by the propagation of
uncertainties, even after attending a course on
the topic. Often, perhaps in desperation, they
quote the general expression for propagation (see
equation (6) in the next section) and try to
differentiate and substitute, and all too often end
up with a nonsensical result. Because of their
lack of understanding they often do not realize
that their result is obviously wrong and may
be surprised that a demonstrator sees this at a
glance. We propose a two-stage approach that is
conceptually easy. Step one is the propagation of
a single quantity and step two is combination in
quadrature.

range of
uncertainty
of x

slope = df
dx

range of
uncertainty
of f

df
dx

f

x

Propagation of uncertainties: I. A single
parameter

Suppose a quantity x is measured and we have
assigned an uncertainty, σx , to it. We are S% sure
that the true value lies between xo−σx and xo+σx .
We might have chosen S to be 68% (or any other
value). We want a quantity f that depends on x
and we know the function f (x). For instance, we
have measured the speed v and want the energy E ,
where E = 1

2 mv2. It is straightforward to evaluate
the value, fo, of f (x) that corresponds to the value
xo. Now we want the range of values of f in which
we are S% sure that its true value lies. This is easy:
evaluate f (x) at x = xo − σx and at x = xo + σx ,
giving

f+ = f (xo + σx) fo = f (xo)

f− = f (xo − σx).

So it must be that we are S% sure that the true
value of f lies in the range f− to f+. This
is illustrated in figure 1. A very good way
of determining f− and f+ is to evaluate them
numerically (for instance by using a calculator). In
many cases we find that ( f+− fo) is approximately
equal to ( fo − f−), so calling (the modulus of)
this σ f x , the result for f is fo ± σ f x . If they
are not quite equal, it is usually acceptable to take
the average. They are equal if σx is so small that
f (x) may be considered a straight line over the
range xo − σx to xo + σx . Treating them as equal
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corresponds to making a linear approximation.
Most calculators have a precision of ten decimal
places, so there is usually no problem in evaluating
the difference between two nearly equal numbers.

Examination of figure 1 shows that, provided
the linear approximation is good, the ratio of the
two ranges is just the slope (the differential) of the
function f (x), i.e.

σ f x �
∣
∣
∣
∣

d f

dx

∣
∣
∣
∣
σx . (2)

We have used the symbol σ f x with the subscript
f x to stress that it is the uncertainty in f due
to the uncertainty in x . It is necessary to take
the modulus of the differential because it might
be negative. By definition all uncertainties are
positive.

Many of the functions met with in the
laboratory are simple and easily differentiated. It
is then sensible to use equation (2). An important
special case is that, if f = Axn, then

(
σ f x

f

)2

� n2

(
σx

x

)2

. (3)

The specific cases of n = ±1, i.e. f = Ax and
f = A/x , are essential, as are n = ± 1

2 , etc.
If the function f (x) is too complicated to eas-

ily differentiate there is no problem. Instead of
persevering with the differentiation, either propa-
gate the uncertainty by direct calculation or look
for an intermediate quantity. Direct calculation,
numerically using a calculator, was not a realistic
technique before the development of low-cost dig-
ital equipment (see section ‘Traditional teaching’).
Intermediate quantities (sometimes called step-by-
step) are best illustrated by an example. Suppose
f (x) = A

x+B , where A and B are constants. In-
stead of differentiating (not so very difficult in this
simple example), let y = x + B and let f = A/y.
It is now easy to propagate the uncertainty from x
to y and then propagate from y to f .

Note that propagation is not dependent on the
underlying distributions taking any particular form
(for instance Gaussian), nor on the concept of the
spread of many measurements. So the teaching
of probability distribution functions, the Gaussian,
and rms spread can sensibly be delayed until after
propagation has been mastered. Our procedure
emphasizes that propagation using equation (2)
entails a linear approximation.

Propagation of uncertainties: II. Quadrature

Having established how to propagate an uncer-
tainty for just one parameter, f (x), we now con-
sider the important, indeed essential, step of sev-
eral parameters, f (x, y, . . .). This is often needed
in laboratory work, and the prescription is simple.
The uncertainties combine in quadrature. In terms
of the uncertainties for single parameters the re-
quired relation is

σ 2
f � σ 2

f x + σ 2
f y + · · · . (4)

Here σ f is the uncertainty in f arising from all
the contributions. (The derivative in equation (2)
should now be regarded as a partial.) It is
straightforward to evaluate, given the separate
contributions. This approach encourages students
to tabulate the separate contributions and thus
to become aware of those which are the most
significant. It needs to be stressed that it is the
contributions, σ f x , that combine in quadrature (not
the individual uncertainties, σx .)

In a first introduction, quadrature can be
presented as a prescription to be justified later.
A plausibility argument considers the possibilities
that the differences (deviations), �x = x − xT and
�y = y − yT, may both be positive, both negative,
or have opposite signs. Thus the contributions to
the value of f sometimes augment each other and
sometimes cancel. Here xT . . . are the true values.

A slightly more rigorous justification for
combining in quadrature is given in the standard
texts; see for instance [3]. Essentially, one
considers the difference, �x , between the
measured and true values for x , and for y,
etc, and also for f . A linear approximation
is made for � f , and then one considers what
happens on average if the experiment were
repeated many many times. The quantity
(� f )2 has a contribution from the products
�x�y. This is zero on average, provided the
measurements are independent (i.e. uncorrelated).
Identifying 〈(�x)2〉 as proportional to σ 2

x , etc,
gives equation (6). The angle brackets 〈 〉, indicate
the average over infinitely many experiments.
The derivation again entails approximations, so
equation (4) is not exact.

Note that the justification of equation (4) does
not depend on the deviations having any particular
distribution (probability distribution function), let
alone it being Gaussian. However, it does assume
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that all the uncertainties correspond to the same
coverage (usually taken to be 68%).

Referring to equation (3), it is clear that, if say
σ f x > 5σ f y , then σ f y should be ignored, as when
squared it makes a negligible contribution.

An important special case is f = Axn ym/zl ;
for this, equations (2) and (4) give

(
σ f

f

)2

� n2

(
σx

x

)2

+ m2

(
σy

y

)2

+ l2

(
σz

z

)2

.

(5)
We stress this relationship because it is so
important to move students on from absolute
uncertainties to thinking in terms of fractional
uncertainties. That fractional uncertainties
combine in quadrature for this case is possibly the
most important relationship for students to learn.

Let us contrast this with the more traditional
approach. In this students are typically presented
with the Gaussian distribution, rms deviations,
etc, before meeting the general formula for the
propagation of uncertainties:

σ 2
f �

(
∂ f

∂x

)2

σ 2
x +

(
∂ f

∂y

)2

σ 2
y +

(
∂ f

∂z

)2

σ 2
z + · · · .

(6)
Of course, this is just equations (2) and (4)
combined. Unfortunately, students seem to
latch onto this equation—after all it is valid for
all functions. They differentiate the algebraic
function (whether simple or complicated) and
substitute a host of numbers and get a result. There
is a lack of appreciation of what is happening, and
because of this lack of transparency there is no way
of knowing if the result is sensible or not. All too
often it is crazy! The proposed two-step approach
enables the propagation to be done numerically or
by using intermediate parameters (as well as by
differentiating). It is easier to check that the final
result is sensible—it must be bigger than, but not
much bigger than, the largest single contribution.

Uncertainty of the mean of several
measurements
It is obvious that the uncertainty of the mean of
several measurements is less than the uncertainty
of each individual measurement, and it is usually
good practice to repeat a measurement a few
times and take the average, and students often
need to do this in their laboratory work. The
question that now arises is how well to believe

the mean. We assume that the uncertainty on the
individual measurements has been estimated (see
for instance section ‘Estimating an uncertainty’)
and now point out that it is easy to evaluate
the uncertainty of the mean, without reference
to any statistical arguments. The mean of N
measurements, x1, x2, . . . , xN , is defined by

m = x1 + x2 + · · · xN

N
. (7)

The uncertainty σm of the mean is given by
propagation of uncertainties, equations (2) and (4).
We assume that the measurements are independent
and that each of the xi has the same uncertainty, σ .
The uncertainty in the mean, equation (7), due to
each individual measurement is

σmx = 1

N
σ, (8)

so combining in quadrature (for N measurements)
we get

σm = σ√
N

. (9)

The fact that uncertainties decrease as the square
root of the number of measurements is a useful
result, which is quite general, and which is often
needed in laboratory work. The derivation shows
that it applies only to the random uncertainties.

Uncertainty from the spread of several
measurements

An alternative way to estimate the uncertainty of
individual measurements is to evaluate the spread.
The best estimate of σ 2 is

s2 = 1

N − 1

∑

(xi − m)2. (10)

In an introductory course it can be stated that
this is for a coverage of 68%, and this can be
justified in a subsequent course on statistics. But
notice that there is no mention of limits of infinite
sums or of probability distributions. Of course,
the uncertainty estimated in this way ignores all
systematic effects. If there is only one data point
(N = 1), then there is no estimate of the spread,
so the factor N − 1 has some plausibility.

When students first meet the method of
least squares for fitting a straight line to data
points, it is usually done without reference to the
Gaussian distribution even though it is related to
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the justification of the method. We note here
that the uncertainty of the data points (using
conventional notation) is that the best estimate of
σ 2 is given by

s2 = 1

N − 1

∑

(axi − yi)
2 for y = ax

(11)
and

s2 = 1

N − 2

∑

(axi + b − yi)
2

for y = ax + b. (12)

These have the same structure as equation (10).
The formulae for the weighted mean of sev-

eral measurements and its associated uncertainty
can also be derived using least squares minimiza-
tion and propagation of uncertainties, without ref-
erence to the Gaussian distribution.

Summary
In this article we have made the following
suggestions. Avoid the word error. Use mistake,
difference, or uncertainty, as appropriate.

Postpone the introduction of statistical con-
cepts, in particular the Gaussian distribution, until
the following have been mastered.

Introduce the concept of uncertainty as
‘degree of belief’, because this is compatible with
students’ concepts, includes systematic as well as
random effects and the skill of experimenter, and
is easy to evaluate.

Teach propagation of uncertainties in two
steps: single parameter followed by quadrature,
stressing that the results must be independent.
(Do not give the general form, equation (6),
because it is never needed.)

Present how the uncertainty of the mean of
several results falls with N , equation (9), by
using the propagation of uncertainties. Present

the estimation of (random) uncertainty from the
spread of several results by quoting expres-
sion (10), giving only plausibility arguments (for
the factor N − 1). Likewise, give expressions for
estimating uncertainties from the spread of data
points from fitted lines using the least squares
method.

Only later, introduce the statistical concepts
of a probability distribution, the Gaussian distribu-
tion, the standard deviation, the central limit the-
orem, and uncertainties as (possibly) being the re-
sult of many small unknowable contributions. This
is also the place to explain the origin of quadrature
and the uncertainty of the mean.
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