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he rainbow, with its arc spanning the sky, is a glorious sight

which never ceases to amaze. Rainbows have always been a
source of wonder [1], sometimes as a symbol of the gods, some-
times as an evil omen, and have inspired artists (who often get it
wrong) and poets such as the Lakes poet, Wordsworth [2]:

“ My heart leaps up when I behold
A rainbow in the sky...”

For physicists, part of the wonder of rainbows is the way that they
literally illustrate so many aspects of the nature of light: most
obviously, breaking up white light into the spectrum of colours.
They also combine ray aspects of light, determining the angular
size of the primary and secondary rainbows, and the wave nature
of light which produces weak “supernumerary” bows, often visible
inside the main primary. Some of the properties which we shall
discuss in this article are apparent in the rainbow shown figure 1,
in which we can just see the weaker secondary, some supernumer-
aries, and the property that the sky is light inside the rainbow and
dark outside.

Rays of light
We all know of Newton’s experiment with a prism, breaking up a
beam of light into the spectrum of colours, and indeed it was New-
ton who explained the way that the wavelength-dependence of
the refractive index of the raindrop produces the colours of the
rainbow. But what is startling about the rainbow is the sheer
intensity of the spectrum, a result of the way that the raindrop con-
centrates the different colours in different directions. And to
understand this we must go back to Descartes [1], who in 1637
described the paths of rays of light through the raindrop, using the
sine law for refraction which we know today as Snell’s law. (It is
not clear whether Descartes knew of the work of Snell; Newton
incorrectly credited de Dominis with the explanation of the rain-
bow, and was rather casual about Descartes’ real explanation [1].)
Rays of light are refracted as they enter the drop, and are then
reflected inside the drop at the air-water interface — once in the for-
mation of the intense primary rainbow, twice for the much weaker
secondary bow - and refracted a second time as they leave the
drop (figure 2). Further reflections are possible, but as we shall see,
higher order rainbows are rather theoretical. Concentrating on the
single reflection, figure 3 shows the paths of different rays incident
on the drop: ray 1, incident towards the centre of the drop, is
reflected back along its own path, but rays hitting higher up the
drop are reflected with increasing angles between the incident and
reflected rays. This continues up to a maximum angle of about 42°
reached by ray 7, determined by simple geometry from the refrac-
tive index of water. Beyond this ray, appropriately called the
Descartes ray, the angle decreases. We have a maximum - the rays
near the Descartes ray emerge in almost the same direction - and
the raindrop scatters most light at an angle of 42° to the incident
light. Taking into account the variation of the refractive index n
with wavelength - the dispersion — gives a rainbow angle of 42.2°
for red light with n = 1.332 and 40.6° for violet with n = 1.343 (the
refractive indices are taken from a very useful web site, [4]). For
two reflections (figure 2), we have a minimum angle between the
incident and scattered ray giving the secondary bow with an
angular size of about 51°. Because the rays of light bend round on
themselves, as we see from figure 2, red is on the inside of the sec-
ondary rainbow, with violet on the outside.
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From this geometry, the primary and secondary bows appear
as arcs making angles of 42° and 51° around the extension of a
line from the sun and passing through the observer’s head (figure
4). As a consequence, when the sun is high in the sky the rainbow
may appear against the ground. All rainbows have the same angu-
lar size, whether they are due to a shower several miles away, or
the spray from the garden hose above the lawn. We may ask where
we see the rainbow — do we see it at the drops, perhaps? From fig-
ure 3 it seems that our eyes focus the rays contributing to the
rainbow at infinity, and the rainbow has only a direction rather
than a position. There is another point of view (literally), which
also suggests that if the rainbow has a location, this is at infinity —
if we, as observers, move, the rainbow moves with us. This means
that a stereoscopic view of the rainbow, with our two eyes, or the
rangefinder of an old-fashioned camera, will place the rainbow at
infinity [1].

The ray theory of the rainbow can be neatly represented as polar
plots of the scattered intensity in different directions after one, two,
or more reflections. To calculate these, we combine Fresnels for-
mulae for the intensity of reflected and transmitted light [5] with
simple ray geometry for different angles of scattering. We obtain
the results shown in figure 5 for the scattered intensity for the two
polarizations of light. In these figures, we have light coming hori-
zontally from the left-hand side, incident on a raindrop at the
centre; the left-hand diagram corresponds to light polarized with
its electric field perpendicular to the plane of the diagram (s-polar-
isation), and on the right the electric field is in the plane
(p-polarisation). The large lobe to the right of the drop in both fig-
ures represents light passing through the drop, refracted but
without any reflection. The primary bow corresponds to the singu-
larity in the scattering after one reflection at +42° with respect to the
incident light, showing up very strongly in s-polarisation, but
much weaker in p-polarisation: the rainbow is strongly polarised.
The figure shows very clearly how light undergoing one reflection

¥ Fig. 1: Rainbow above the Lake District fells: the much weaker
secondary bow is just visible, with reversed colours. Several
supernumerary bows, with alternating green and violet, can be
seen inside the brilliant primary. The sky is distinctly darker
outside the primary.
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A Fig. 2: Rays of sunlight refracted and reflected inside a raindrop:
the left-hand figure, with one reflection, shows the paths which lead
to the primary, and the right-hand figure, with two reflections, the
secondary.

A Fig. 3: Parallel rays of light incident on the raindrop, with one
reflection. Ray 7, the Descartes ray, emerges at the greatest angle,
and rays pile up in this direction. (Figure from [3].)

A Fig. 4: Drops at an angle of 42° to the line from the sun, passing
through the observer's head, scatter sunlight to form the primary
bow. Those drops at an angle of 51° scatter sunlight to give the
secondary. The diagram should be rotated about this line to form

the complete bows. (Figure from [3].)
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is back-scattered up to this maximum angle, and beyond +42° no
light is scattered. At £51° there is a singularity for scattering after
two reflections - the secondary bow - again strongly polarised.
This singularity is the opposite way round from the primary bow
singularity, with two reflections scattering some light beyond +51°,
though this does not show up on the scale of the plots.

These singularities in the scattering intensity I as a function of
angle ¥ have the form I o< [9- 9|2, where ¥ is the rainbow
angle [7]. To derive this we must be clear what we mean by I - as
usual in treating scattering, I(1)d®} is the intensity of light scattered
into a small range of angles d}(this is strictly speaking in two
dimensions, and in three dimensions there is an extra factor of
sin?}). It follows that together with the various reflection and trans-
mission coefficients, I contains the term |dy/ dv|, where y is the
“impact parameter” of the ray of light incident on the raindrop,
the height above ray 1 in figure 3. As ©¥(y) is parabolic at the max-
imum corresponding to the Descartes ray, |dy/d®| varies like
|89- 99| 2, hence the singularity in the scattering. Except for the
primary rainbow in s-polarisation, the singularity is too narrow to
be apparent in figure 5. We shall see shortly what happens to this
singularity when the wave nature of light is considered.

The light scattered up to +42° produces a bright sky inside the
primary, the brightness increasing as the rainbow is approached.
This can be seen quite clearly in figure 1. As no light is scattered
for one or two reflections between +42° and +51°, the sky appears
dark in this range of angles - this phenomenon goes under the
name Alexander’s band, perhaps reminiscent of some dance band
from the 1920’s, but in fact named for the Greek philosopher
Alexander of Aphrodisias (the names get more and more unlike-
ly) [1]. Are there higher order rainbows, corresponding to three,
four and more reflections? From figure 5 we see that three reflec-
tions produce weak singularities at +42° in the forward direction
(for n = 1.332), and though it is not clear, four reflections produce
still weaker singularities at +43°, almost on top of the three reflec-
tions peak. In principle these correspond to higher order rainbows
around the sun, but the fact that the singularities are extremely
weak and lie inside the large forward scattering lobe means that
they must be practically invisible. Bernoulli thought that the sharp-
eyed lynx or eagle might discern these higher order bows [1] - alas,
it seems very unlikely [3]. Quite frequently we have been told about
“rainbows” visible around the sun - these are invariably ice crystal
halos, and on such occasions we refer our friends to Greenler’s
“Rainbows, Halos, and Glories” [3]. Very higher order bows can in
fact be measured in laser experiments [6].

Close to the singularity, the scattering in the primary bow is 96%
s-polarised, and in the secondary 90%. This polarisation results
from the fact that the angle at which the light is reflected inside
the drops is close to the Brewster angle, at which the reflection
coefficient for p-polarised light is zero [5]. Taking the refractive
index for water for green light as n = 1.335, the Brewster angle is
37°, and the angle of reflection of the Descartes ray for the prima-
ry bow is 40°. At this angle the ratio of the p to s reflectivities is 0.03.
For the secondary bow the angle of reflection is 45°, giving a ratio
of the reflectivities of 0.26 at each of the two reflections. The s-
polarisation of the rainbow corresponds to the electric field vector
being tangential to the bow, and consequently it is interesting to
view the bow through Polaroid. The segment of the rainbow which
is tangential to the plane of polarisation of the Polaroid appears rel-
atively brighter compared with the background sky, quite a striking
effect [8].

The scattering intensity for single reflection in p-polarisation dis-
plays a curious angular variation within the primary rainbow
singularity (figure 5). This is a consequence of the fact for a range
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A Fig. 5: Polar diagram of scattering of light incident horizontally
from the left on a raindrop at the centre of the figures.

(a) s-polarisation (electric field perpendicular to plane of figure);
(b) p-polarisation (electric field in plane). The numbers indicate the
number of reflections. The refractive index is taken as n = 1.332
(corresponding to red light).

of angles inside the rainbow angle, there are two rays which con-
tribute to the intensity at each ¥(15° < ¥ < 42°), each with its
variation in reflectivity as the Brewster angle is approached. We
doubt whether this scattering has been seen, as these lobes are very
weak compared with the s-polarisation rainbow. We should note
here that a scattering angle of 15°, the minimum angle for which
two rays contribute, corresponds to the incident ray which grazes
the raindrop, the only ray for which total internal reflection occurs.

Wave-fronts and waves
Rainbows produced by raindrops about 1mm in diameter or
smaller often show several extra bands of colour, typically alternat-
ing green and violet [8], inside the primary (figure 6) — these are
the supernumerary bows, produced by interference of the light
waves [3]. The two rays which leave the drop for a range of direc-
tions inside the rainbow angle have different path-lengths, and
interfere with one another. To obtain quantitative results, we first
construct the geometrical wave-front, a surface perpendicular to the
classical rays, on which the phase of the waves is constant. In the
Huygens-Fresnel semi-classical approach, each point on the wave-
front is considered as a source of spherical waves, which interfere
with each other - this is not a full solution of the wave equations,
but is a good approximation when the wavelength is small com-
pared with the dimensions of the object scattering the light [5].

Geometrical wave-fronts corresponding to light leaving the
raindrop are shown in figure 7, the different curves corresponding
to different phases of the waves, or different path-lengths the waves
travel. The fronts which intersect the drop are, in fact, virtual,
formed by extending the actual wave-fronts backwards through air
rather than through the drop. They correspond to the rays leaving
the drop extended backwards as straight lines. What we immedi-
ately notice are the cusps in the wave-fronts, which lie on the
Descartes ray (except close to the drop), and trace out a caustic.
(The bright patterns on the surface of the breakfast cup of tea
reflected from the kitchen spotlight are a familiar example of
caustics.) It is the interference between the wave-fronts on either
side of the cusps which give rise to the supernumeraries.

The next step is to use one of the wave-fronts as a source of
waves, to find the intensity as a function of scattering angle. This
calculation was first performed by Airy, described in a classic paper
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published in 1838 [9], following Young’s realization in 1804 that
interference causes the supernumeraries [10]. A wave-front which
we may use is the right-hand one in figure 7 and we use the axes
shown on the diagram, with the y-axis in the direction of the
Descartes ray. Then the Fresnel formula tells us that the amplitude
of the diffracted ray at a large distance from the drop, at angle © to
the Descartes ray, is proportional to the integral along the wave-
front, fl//exp[i2n(xsin19+y(x)cost9)/ AIN1+(dy/dx)’dx. Here, Ais the
wavelength of the light, and y is the amplitude of the electromag-
netic field over the wave-front, whose equation is y(x) [5]. The
exponential gives the phase of the contribution over the wave-
front, and the square root gives the length of the element of the
wave-front; positive ¥} corresponds to scattering outside the
Descartes ray. Why do we choose this particular wave-front for
the Fresnel integral? We want to avoid the singularity of the later
wave-fronts with cusps, and the wave-front where the cusp just fin-
ishes has a large amplitude right at the end, a point through which
many classical rays pass. Moreover, this virtual wave-front has a
simple analytic form in the region which mainly contributes to
the integral, y = oxx® — a result which Airy used to evaluate the
integral in terms of his famous function.

In evaluating the diffraction integral, Airy assumed that the
amplitude y was constant over the wave-front; neglecting the
square root for the length of wave-front, the diffraction amplitude
for small angle ¥ is given by the Airy integral

‘I’(z?)ocfcos[ZTt(xﬁ + ax®)/A]dx. This may be expressed in terms
0

of the Airy function Ai, W(19)e<Ai(8/y) , with y = (30{[%]2)” ’~ Airy
evaluated his function by hand, but it is now immediately avail-
able in computer packages. The cubic coefficient & depends on
the refractive index, and for n = 1.335 it is given by & = 1.62/R?,
where R is the radius of the raindrop [11]. The resulting diffraction
intensity is shown in figure 8, for light of wavelength A = 500 nm
scattered by a drop of radius 0.5 mm, plotted as a function of
angle from the Descartes ray. We see that the singularity in ray
theory is replaced by a finite peak, the primary bow in diffraction
theory, with a maximum at about 1/4° inside the Descartes ray. The
subsequent peaks constitute the supernumerary bows.

The integrand in the Airy integral oscillates very rapidly as x
varies over the wave-front, when angle 1} is negative, except where
the wave-front is perpendicular to the direction in which the ampli-
tude is evaluated. For a range of angles inside the Descartes ray
there are two points at which the wave-front is perpendicular, cor-
responding to two classical rays travelling in this direction. Rays
AA and BB’ in figure 7 are two such rays, travelling at ¢ = -5° from
the Descartes ray, and at the points of intersection with the wave-
front @ and b’ the front is perpendicular. Around these two points,

» Fig. 6: Rainbow above Penyghent, North Yorkshire, with several
supernumerary bows inside the primary. The secondary bow is
barely visible.
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the phase in the cosine integrand varies very little, and this domi-
nates the integral. The method of stationary phase shows how the
integral may be determined in terms of the contributions from these
two regions [12], and the result is that the amplitude is given

approximately by W(#}) = cos[n/4 -2 (01121 N7 817y) ],

negative. The corresponding intensity is shown by the dark blue
line in figure 8, and we see that apart from a very small range of
angles as we approach the Descartes ray, this approximation is
amazingly accurate. The method of stationary phase gives the
interference pattern from the two rays travelling in direction ¥,
producing supernumeraries. Something surprising, which does not
come out of a straightforward interference picture, is the phase
shift of /4 found in the stationary phase result given above, shift-
ing the first maximum and the supernumeraries. Such phase shifts,
and the general study of wave forms near ray caustics and singu-
larities, are a very active topic of current research, and there are
many papers by Berry and co-workers in this area [10].

For positive angles, the method of steepest descents [12] may
be used to obtain an approximation to the Airy integral (this
method is the same as stationary phase if we go into the complex

plane), giving (1) = exp[-2 (8/y)*]/[2Vw(|9/y)"], ¥ positive.

This gives the intensity shown by the green line in figure 8, again
remarkably accurate beyond ¥ = + %°. The Airy function crops up

0571

V¥ Fig. 8: Intensity of light, wave- :
Intensity

length 500 nm, scattered by a
raindrop of radius 0.5 mm. Angles are
measured from the Descartes ray. Red oI
line: Airy theory; blue line, stationary
phase approximation for negative
angles; green line, steepest descents D3
approximation for positive angles.
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<« Fig. 7: Wave-fronts of rays leaving the raindrop, n = 1.335, with
rays incident on the drop as in figure 3. The wave-fronts intersecting
the drop are “virtual’, extended backwards through air. DD'is the
Descartes ray leaving the drop, and AA, BB'are the two rays leaving
the drop at a scattering angle inside the rainbow angle, which can
interfere. All these rays are extended backwards through air. Local
axes x and y are for the Fresnel integration over the wave-front.

again and again in physics, in particular as the solution of the
Schrodinger equation in a linear potential, and these approximate
expressions for the Airy function (actually the first terms in an
asymptotic expansion) are important in the mathematical analysis
of this equation [12].

From supernumeraries to fog-bows

It is remarkable that interference fringes show up as supernumer-
aries in the rainbow, when we consider that the light waves are
being scattered by raindrops 1000 times larger — we are used to
interference effects in scattering over length scales comparable with
the wave-length of light. Supernumeraries are even more remark-
able when we consider that this effect of light waves appears in a
large-scale phenomenon, traversing the sky! The appearance of
these supernumeraries depends on the size of the raindrops scat-
tering the light, and we can explore this using the theory described
above.

The intensity of light scattered by the raindrop at varying
angles in the primary bow is shown in figures 9a and 9b, for rain-
drops of radius 0.3 mm and 0.05 mm respectively. On each figure,
the three curves correspond to red, green and blue light. For rain-
drops of radius 0.3 mm (figure 9a) we see that red and green give
good strong principal peaks, with the first supernumerary of red
overlapping with the first peak of blue - these constitute the pri-
mary bow, with the overlapping red and blue enhancing the violet.
Inside the primary we see supernumeraries, which are initially
alternating green and red + blue. It is a little dangerous to go from
this figure directly to the actual appearance of the rainbow; for
this we should consider the scattering of the whole spectrum of
visible light, and then use the trichromatic nature of colour vision
to work out the appearance of the rainbow [1]. But figure 9a, taken
at face value, is consistent with the supernumeraries described by
Minnaert in his classic book [8], as alternating “violet-pink” and
green (the violet-pink comes from the superposition of the red and
blue peaks). We can make out several supernumeraries just inside
the primary bow in figure 6,and at least on the original photograph
these are seen to be alternating violet and green. In nature, only a
few supernumeraries are ever visible - for one thing, raindrops are
unlikely to have a uniform size, and this varies the phase and wave-
length of the oscillations. Moreover, the sun has an angular
diameter of about '4°, again smearing out the supernumeraries.
The supernumeraries will be less apparent with bigger drops, for
which they are more closely spaced, and hence more likely to be
lost.

With very small drops of radius 0.05mm, mist rather than rain,
the principal peaks broaden and overlap completely (figure 9b).
The colours of the primary bow are completely smeared out — we
observe in this case a white rainbow, or fog-bow, the figure sug-
gesting that the supernumeraries should be quite strong. Some
photographs in the literature [1] and on the web do show super-
numeraries with fog-bows, but the only time that one of us
observed a complete white rainbow, only the principal bow was
visible, and this rather faint (figure 10). As there is no mist or fog
(the visibility of the snow-covered Helvellyn ridge is excellent), this
must be a cloud-bow, formed by droplets in the clouds.
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Beyond the rainbow

The theory of the rainbow which we have described explains
everything in terms of classical rays of light, even Airy theory
boiling down to interference between two rays of light travelling in
the same direction. However, these theories are not the whole story
of light scattering by water droplets, and they cannot begin to
explain another phenomenon involving light scattering from mist
- the glory, and the Brocken spectre [3,8]. The full scattering theo-
ry of light by a dielectric sphere - Mie theory - is needed to
understand the glory, and computer programs are available on the
web to explore this [4]. The beauty of the physics of rainbows is
that so much can be understood in terms of rays and simple wave
theory: rainbows open our eyes to some of the fundamental prop-
erties of light. M
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¥ Fig. 10: Cloud-bow on a winter's day above the Grasmere fells,
Lake District. As an aid to the eye (the bow is faint), it appears as
an almost complete semicircle, spanning the double photograph.
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