Supporting Information for

Redox-active, near-infrared dyes based on 'Nindigo' (indigo-*N***,***N***'-diarylimine) boron chelate complexes**

Graeme Nawn,^{*a*} Simon R. Oakley, ^{*a*} Marek B. Majewski,^{*b*} Robert McDonald,^{*c*} Brian O. Patrick,^{*b*} and Robin G. Hicks^{**a*}

	Contents
NMR Spectra	Page S2
Electrochemical Data	Page S22
X-ray Structures	Page S24

¹³C NMR spectrum of **2a**

ppm

¹¹B NMR spectrum of **2a**

-126.8

ī.

-127.0

-127.2

¹⁹F NMR spectrum of **2b**

¹H NMR spectrum of **2c.** Peak at ~1.5 ppm is due to residual water and peak at ~5.2ppm due to solvent.

-100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 ppm

¹¹B NMR spectrum of **2c**

¹H NMR spectrum of **2d.** Peak at ~1.5 ppm is due to residual water and peak at ~5.2ppm due to solvent.

¹³C NMR spectrum of **2e**

¹⁹F NMR spectrum of **2e**

¹¹B NMR spectrum of **2e**

¹⁹F NMR spectrum of **2f**

¹¹B NMR spectrum of **2f**

¹H NMR spectrum of **3a**

¹⁹F NMR spectrum of **3a**

2a (CDCl3)

¹H NMR spectrum of **3b**

¹¹B NMR spectrum of **3c**

Decomposition of BisBoroDmpNindigo after 52 hours in CD2C12 at room temperature

 $^{\rm 19}{\rm F}~{\rm NMR}$ spectrum of ${\rm 3d}$

-100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 ppm

¹¹B NMR spectrum of **3d**

32051.281 15.600 6.50 297.4 1.00000000 1

f1

IANNEL f1 11B 14.10 usec -3.00 db 160.4616790 MHz 16384 160.4616000 MHz 0 1.80 Hz 0 1.40

BisBoroDippNindigo

1.8

¹H NMR spectrum of **3f**

¹¹B NMR spectrum of **3f**

use dB MHz MHz

Electrochemical Data

Cyclic voltammagram of 2b (CH₂Cl₂ solution, 0.1 mM Bu₄NBF₄ electrolyte and scan rate 100 mVs⁻¹)

 $Cyclic \ voltammagram \ of \ 2d \ (CH_2Cl_2 \ solution, \ 0.1 \ mM \ Bu_4NBF_4 \ electrolyte \ and \ scan \ rate \ 100 \ mVs^{-1}$

Cyclic voltammagram of 2e (CH₂Cl₂ solution, 0.1 mM Bu₄NBF₄ electrolyte and scan rate 100 mVs⁻¹

Cyclic voltammagram of 2f (CH_2Cl_2 solution, 0.1 mM Bu_4NBF_4 electrolyte and scan rate 100 mVs^{-1} $\,$

X-ray structures

ORTEP drawing of 2b (20% probability level). Aromatic hydrogen atoms are omitted for clarity

ORTEP drawing of the two crystallographically-independent molecules of 2c (20% probability level). Aromatic hydrogen atoms are omitted for clarity

ORTEP drawing of the two crystallographically-independent molecules of 2d (20% probability level). Aromatic hydrogen atoms are omitted for clarity

ORTEP drawing of 2f (20% probability level). Aromatic hydrogen atoms are omitted for clarity