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Abstract. The carbon dioxide molecular dication is investigated by mullireference mnfigurarion 
interaction mmputations. Whereas the system is found to be unbound by De = -5.12 eV 
with respect to fragmentation into CO+(2Ec) + O+('S.), the pnund-state potential energy 
surface of COY enjoys a local minimum for a collinear symmetric configuration where the 
carbon nucleus i.s centred between the outer two oxygen nuclei (with internuclear separation 
Rc-0 = 1.22 A). Potential barriers lager than 1 eV render the corresponding electronic 
ground sate 3Z; metastable against dissociative tunnelling. For the lowest seven excited states 
and system configurarions restricted to linear symmetric geometries, potential energy curves 
are presented and compared with the experimental double ionizabion spectrum of CO2 in the 
Franclt-Condon region. 

The doubly positively charged carbon dioxide molecular ion belongs to those dications most 
frequently studied in experiments [ 1-13]. The available information is based on a variety of 
experimental methods (double photon and electron impact ionization, charge transfer, single 
electron capture, Auger spectroscopy, charge separation mass specttomehy, in conjunction 
with various coincidence techniques), and includes data on appearance energies of numerous 
states, dissociation thresholds, ion branching ratios and lifetimes. In contrast, up till now the 
CO;+ system has only received surprisingly little theoretical consideration. Early treatments 
by Kelber et al, &yen and Laramore 1141 use the one-electron approximation, SCF and 
restricted CI methods for the calculation of Auger transition intensities and energies. Millie 
et ai [6] computed the vertical Franck-Condon excitation spectrum-COz -+ CO;+ +2e- up 
to TJ 12 eV above the lowest CO:' energy, employing a variant (CIPSI) of polarization 
CI techniques. All these previous calculations, however, were performed for a fixed 
system geometry, i.e. the equilibrium configuration of CO?. None of these theoretical 
publications provides information on potential energy curves (PECs) or, in particular, on the 
experimentally observed metastability of COP.  This lack of data motivated the present 
study. 

An inspection of the available experimental and theoretical energies shows that the lower 
part of the electronic spectrum of C O P  is governed by a high density of closely spaced 
electronic states. Generation of potential energy surfaces (PEss) for all these states is an 
extended project [15] consuming an immense amount of computational resources. Here, we 
will resbict our attention to the ground-state PES and to some excited @ut confined to linear 
symmetric geometries) states bf CO;+. Since from the outset numerous configurations are 
anticipated to enter the COP wavefunctions, we chose the MRDCI (multireference single 
and double excitation configuration interaction) procedure [ 161 for our computations. Two 
different Gaussian basis sets were employed; basis I is of type (13s7pld/8s4pld) for both the 
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C and 0 atomic centres and contains the same orbitals as the basis set applied by Levasseur 
et al [17] in their investigation of C@+. Basis U is conshucted by supplementing the 
orbitals for C and 0 given by Lie and Clementi 1181 in their tables A5 and A7, respectively, 
by additional s-polarization functions (exponents <C = 0.035. (0 = 0.075) and is of the 
form (14~8pW8s4p2d). In total, basis I includes 120 uncontracted or 84 contracted, and 
basis II 150 uncontracted or 96 contracted Gaussians. In the CI procedure, all electrons 
were considered and no core electrons frozen. As expected, a relatively large number of 
main reference configurations (30-60) was necessary to guarantee a satisfactory contribution 
Enc." % 0.9 rt 0.02 in the CI wavefunctions. Selection thresholds for the CI maeix were 
specified in the range between 4 and 8 phartree. Contributions to the a energies from 
higher than double excitations are estimated by the generalized Davidson procedure [19]. 

me lowest energies of CO;' oclur for a triplet state. AS a result of our computations, 
in figure 1 part of the lowest triplet PES with c$, symmetry (i.e. for collinear nuclear 
configurations) is depicted. In figure 1, the existence of a (local) minimum is obvious. 
This minimum is assumed for a geometry where the nuclei are arranged along a linear 
chain OC-0 with equal separations Rc-0 = R, between 0 and C, corresponding Lo the 
electronic state 'E;. Our computation predict R, = 2.28 and 2.29 a0 (basis I and II, 
respectively) from the Davidson-uncorrected energies. or Re = 2.31 ao (basis I and II) from 
the Davidson-corrected values. This critical point of the Cm-PES at Re also remains a 
(local) minimum (and does not tum into a saddle point) if the system geomehy is no longer 
confined to a linear one. as illustrated in the case of bending deformations by the broken 
curve in the inset in figure 2. 

RXU [bohr] 

Figurel. Conlour lines E(Rxv.Rrz)= 
E o t n A E , n = O . 1 . 2  ..... 40,ofUK 
lowest triplet C,, PES of C$'. Hen 
Rt, := I€& - Rjl denotes UK inter- 
nuclear distance, wilh Rx, & being 
the positions of ule 0 nuclei, and 
Ely npmenting the position of he C 
nucleus. The contour lines an con- 
stmctcd from lhe Davidson.mmcte4 
energies from bads I, starting at Eo = 
-186.965 hamre (innermost contour) 
and increasing by AE = 10 "ee. 

Whereas the contours in figure 1 reveal a clearly visible dissociation channel for which 
one of the C-O distances increases while the other one shrinks to Rc-0 m 2.1 ao, the local 
character of the observed minimum cannot be inferred from the restricted range of figure 1. 
The metastability becomes fully evident from the cross section of the Cm,-pw plotted in 
figure 2 with one of the distances fixed at k-0 = 2.12 00. In a complementary calculation 
on COt, this distance Rc-0 = R,(COc(X2E+)) was obtained as the equilibrium position 
of the CO+ ground state P E +  (experimental value: 2.107 a,, [ZO]). Hence, this curve in 
figure 2 represents the energy behaviour when an O+ ion approaches ground-state CO+. 
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Figure 2 pw (Davidsancomted energies from basis D for triplet CO:'. 'The situation of 
GY geometry with subsystem CO fixed at Ryz = 2.12 a0 wilh the ohm 0 nucleus moving 
from Rxy = 2.0 to 7.0 a0 is shown. Inset, full w e :  C& geometry, both outer 0 nuclei 
fixed at RXZ = 2R.. the C nucleus varying between R := Rxy - R. = -1.0 and +LO ag 
(asymmetric smtching). Insert, broken w e :  Czw genmehy, fixed distances Rxy = Ryz = Re, 
whereas lRll := IRy - (Rx - Rz)/21 (= distance from the C nucleus to the cenke of the line 
between the 0 nuclei) varies from -1.0 to +1.0 a0 (bending); this mrresponds to a variarion 
of Ihe bond angle between -128O and +128". 

Its shape is characteristic for metastable molecular systems 1211, with a well separated 
by a barrier from the energetically lower asymptotic configuration. The barrier height for 
the situation of figure 2 is given by 1.08 @avidson-uncorrected) and 1.03 eV @avidson- 
corrected), and, as a good approximation of the transition state, these values should also 
render the minimal barrier height that separates the minimum of figure 1 from the dissociated 
system. A schematic overview of the asymptotic fragmentation channels into diatomic plus 
atomic subsystems is assembled in figure 3. With respect to the lowest asymptotic state, i.e. 
COt@Z+)+Ot(4S.). the metastable3C; minim um of COP is unbound by De = -5.65 
and -5.62 eV (basis I and II, respectively, Davidson-uncorrected) or by -5.12 eV (basis I 
or II, Davidson-corrected). 

CO('Z+) t W(V) 

Fwe 3. Possible fragmentation channels of 
W W  + W W  cW. since neither c@+ nor have m e  

bound states. the asvmototic enemies C+fzpl + ~, ~~~~~ "~~ . ~I . 
O'('S.) and Ot( '~~~+Ot( 'S. )  fix the levels 
of CO'' and OF.', respectively. If the lowest 
metastable configuration of these systems is to 
be considered, the carespanding levels have to 
be lifted by 5.89 and 3.92 eV. Not shown are 
subchannels associated with excited states, as e.g. 
CO+ ( Zn) + O+ ('&) at 2.57 ev. 

The reported experimental dissociation thresholds (relative to the appearance energy of 
CO;') of 1.4 f 0.5 eV [6] 01 1.6 rt 0.3 eV [I31 are somewhat larger than the minimal 
barrier resulting from our computations. For the tunnelling probability and thus for the 
lifetime of the system, more important than the barrier heights are the barrier widths. 
Figures 1 and 2 show that for energies not too much above the equilibrium E(&) the 
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minimal barrier width is given by M 2 Q. For its vibrational (and rotational) ground state, 
tunnelling dissociation of 16C'80;t should be negligible, and a WKB estimate confirms that 
for the lowest vibronic level CO;. is practically stable (lifetime > IO'O s). However, 
similar to other metastable molecular dications 1211, for vibrational motion above the zero- 
point energy the transmission coefficient through the banier increases exponentially and the 
lifetime decreases correspondingly as the vibronic (resonance) levels converge to the barrier 
top. Experimental lifetimes vary from 0.9 to 21.6 fis [2,5,11], indicating that in these 
measurements probably Cd,+ in excited vibronic (or electronic) states has been observed. 
The extremely broad range of possible lifetimes as a function of the vibronic excitation 
may also explain the conclusions drawn by Field and Eland [ I  I], namely that CO;' does 
not have a single characteristic lifetime, but instead at least thee different mean lifetimes 
(in the 'stable', metastable and unstable range) would be necessary to model the measured 
data. 

By ionizing C02, appearance energies E. of COP have been measured in a great number 
of experiments. Values for Ea determined via electron impact ionization vary between 36.4 
and 38.6 eV [l,2], while photoionization yields E. from 36.2 to 37.7 eV [4,6,12,13]. The 
appearance energies obtained by double charge transfer are almost identical, i.e. 37.7 eV 
[8, IO] and 37.8 eV [9]; a SEC (single electron capture) experiment leads to E ,  = 37.4 eV 
[7] (the error bars of the experimental E. range from kO.l to k0.5 eV). ?he vertical 
transition energies T,(COz( 'E:), C033E;)) at Rc(COz( 'Z:)) can be considered as a 
theoretical quantity relevant for comparison with E.. Previous T' values were computed 
by Millie et a! [6], yielding the CmSl result Tv = 36.7 eV, and by Langford et at 1101 
whose MPL calculations produced 37.58 and 38.51 eV (depending an the basis set). To 
derive a m D C l  result for Ty, we employed basis I and II to compute the ground-state 
energy of CO2 at its (approximate) equilibrium R, = 2.20 q. The obtained (Davidson- 
corrected) values -186.3004 (basis I) and -186.3414 hartree (basis U) bracket the total 
energy -186.31141 hartree reported by Knowles et al [22] in their MRCI investigation 
of CO2 with a (5s5p4dIf) basis set. The resulting vertical transition energies T, = 36.7 
(Davidson-uncorrected) and 36.9 eV (Davidson-corrected) from basis Il are r;: 0.3 eV higher 
than those from basis J, but, nonetheless, similarly to the ClPS1 T,, still lower than most 
of the experimental E,. This discrepancy might indicate a lack of computational accuracy; 
however, one can also imagine other reasons. One possibility could be that in experiments 
CO:+ in excited vibronic states is predominantly detected; at least, this is very probable for 
those measurements that record only short-lived COP, i.e. CO;' with vibronic (resonance) 
levels close to the barrier top and thus = 0.5-1.0 eV above the electronic 3E; energy at 
R = 2.20 Q. In this direction also points the observation that-despite the comparable 
equilibrium bondlength-the Franck-Condon overlap between the vibronic ground states of 
CO2 and CO;' seems not to be substantial (e.g. the distance Rc-o = 2.2 a0 lies slightly 
to the left of the inner turning point and thus already in the classically forbidden region 
of the lowest symmetric stretching mode of CO;'('CJ). On the other hand, adding to 
our computed T, = 36.9 eV the difference 0.1-0.2 eV by which the vibrational zero- 
point energy of COP exceeds that of C q ,  we arrive at a result within the error bars of a 
recent apparently rather precise value E. = 37.2&0.1 eV from photoionization experiments 
[12]. The adiabatic transition energies T(CO2('E,+), COP(3E;)) from our calculations 
are almost exactly 0.2 eV below the corresponding Tv (basis I ,  E) given above. 

As already indicated for the zero-point energy, the vibrational normal modes in COP are 
higher than in C02, i.e. @(Alg) = 1400 cm-I, @(AI.) = 3240 cm-', @(El.)  = 980 cm-I, 
compared to the analogous frequencies 1388, 2349, and 667 cm-' in C& [23], thus 
reflecting the somewhat stiffer bond swcture of the dication. This is in accordance 
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with the fact that in the neighbourhood of its equilibrium, the electronic configuration 
of CO;'('C;) is chiefly determined by two holes (formed by non-binding ng electrons) in 
the CO2( 'E:) configuration. Table 1 summarizes some characteristic theoretical properties 
of the metastable C O P  ground state. That the metastable equilibrium is assumed in linear 
geomehy should come as no surprise. Even for systems with bent neutral parents (as 
e.g. Hes, Bq), the additional Coulomb repulsion proved strong enough to push the (local) 
minimum of the dicationic ground state PES to a collinear configuration [24-261. Compared 
with the stability properties of other doubly positive trimers, CO;' plays an intermediate 
role: its equilibrium bondlength is longer than the Re = 1.75 a0 of Hg t  [24], not much 
different from the Re = 2.43 a0 of 
of B e  [SI. The barrier height Db in CO;t exceeds the Db = 0.5 eV computed for 
H e ,  but is smaller than the values 1.4 eV for Be," and 4 eV for C p .  The energy 
'stored' behind the barrier, -De, also behaves along these lines, with the CO:+ De situated 
between D, = -6.4 eV for He:t and the dissociation energies De = -1.4 eV for Be,'t or 
D. = -1.5 eV for C:t, 

[26], but distinctly shorter than the Re = 4.09 

- 3ci W 

Table 1. Theoretically predicted properties of Cogt (based on a computations within non- 
relativistic Schriidinger theory. assuming h e  Born-Oppenheimer approximation). 

P w e w  Theoretical prediction 

Equilibrium D,h structure O ' - G t S  
Ground state 'E;, quasibound 
RC = Rc-a 
Total energy E ( R J  -186.9920 hart-ee 
Barrier heighl > l . O e V  
Dissociation Lowest channel COt(*Zt)+O+('S.) 
Disrcciation energy -5.1 eV 

T.(COI( 'E;), C09(3Ep 36.7 eV 

2.30 5 0.02 ao 

Electronic coofiguration 10343440,' lm:2U;3u; Ilr$?; 

_.____ :E:] 
sc: ............ ' t N  
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Turning now to an analysis of other electronic state of CO:+, pEcs for the eight lowest 
electronic states restricted to the Dmh geometry are displayed in figure 4. All these pecs 
converge rapidly to their common dissociation limit O+(4S,) t C( 3P) t Of( %"). What is 
remarkable about figure 4 is not only the high density of states already mentioned earlier, 
but also the striking similarity of all the shapes of the PEG, including the almost coincident 
positions of their minima. These similarities mirror the close relationship between the 
involved elecfxonic configurations. In the vicinity ofthe minima, the states 'Z;, 'As. 'Zz 
are dominated by the ng2 holes, the states 'Z;, 3Au, 'E:. 3Z; by z;ln;l, and the state 
31Tu by u;In;'. Further properties of these states are collected in table 2. It may be 
appropriate to emphasize that the tabulated minima (except for the ground state) are valid 
only for the system in Dmh geometry. The role played by these points if the PIX% are 
extended to asymmehical linear or bent nuclear geometries is a priori not clear and needs 
to be examined in more detail 1151. Moreover, the 'A, and 3Z:.C states are energetically 
not much separated and their PECS hardly discemible on the scale of figure 4. In particular, 
their small Tc difference (cf table 2) renders a definite ordering between both states difficult 
and an improved resolution by more accurate computations would be required for a final 
decision. 

Table 2 Low-lying states of CO:' in Dmh geamtry: Equilibrium distance R. = Rc-0, 
excitation energy To, and verrical energy at the reference distance R,r 3 2.2 og, The Davidson- 
uncorrected and Davidsoncorrected values are given in the upper and lower rows. respectively. 
All results are €mm basis I, unless olhemise indicated. 

T v ( R d  (ev) 

State Q (og) C (eV) Basis I Basis II 161 

3Z; 2.28 0 0 0 0 

'As 2.29 1.24 1.23 1.24 1.21 
2.31 0 0 0 0 

2.32 1.21 123 1.24 

2.31 1.92 I95 1.88 

2.38 2.25. 2.81 2.61 

2.38 2.82 3.33 3.07 

2.37 287 3.M) 3.40 

2.45 3.83 4.62 4.62 

2.21 4.29 4.27 4.25 

'El 2.29 2.01 2.04 1.90 1.83 

'E; 2.36 2.30 2.79 2.53 2.87 

3Au 2.36 2.84 3.30 3.01 3.25 

3Z: 2.35 2.87 3.48 3.50 3.44 

'E; 242  3.94 4.66 4.64 4.85 

3n, 236 4.44 4.41 4.40 4.17 

Table 2 contains also the relative vertical excitation spectra from basis I and II 
at R d  R,(C02('Z:)), together with the Tv values computed by Millie et al. A 
c&ponding schematic  comparison^ of the experimental and theoretical vertical excitation 
energies is presented in figure 5. For the tbree lowest states %;. 'Ag, 'E:, inspection 
of figure 5 shows a satisfactory-yet not perfect-agreement between all the experimental 
and theoretical data. Although for the next higher level, 'Z;, our result is somewhat 
below the CIPSI value, there still exists a unique correspondence between the energies from 
theory and experiment. For the more excited states, 'Au, 'E; and the theoretical 
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Figure 5. Lower part ofthe verfical excitation spec- 
trum of CO? in ~~h geo,mlry at R,C = 2.2 %. 
Levels relative to the appeanncc (experiment) or 
ground-sfate (theory) energy of C@* an shown, 
The experimental ermr ban an indicated by dotfed 
boxcs. Full boxes mark energy intervals observed 
in experiment for the same state: A, PI (photoion- 
ization) and m (double charge bdnsfer) 161; B, 
SEC (single electron capture) [7h C. m [IO]; D. PI 
[121; E, ups1 computation [61; F, MRW mmputa- 
tion (basis U). this work. 

values agree within 2:: eV. This may be acceptable, but also leaves room for improvement. 
From the available experimental levels within the considered energy interval, the window 
around 2.8 eV observed in the double charge transfer experiment by Langford et nl [IO] 
can be assigned to the 'Au state. In contrast, the window around 3.9 eV falls between the 
theoretical 3 Z t  and 311u levels, and a unique assignment seems difficult. Let us mention 
that the ordering of states accordiag to increasing T, or T, energies produces identical 
sequences, except for the 'nu and 'Z; states with PEG that cross between R,(CO2('Z.$)) 
and Re(CO:+(3E;)). 

In conclusion, our computations provide theoretical evidence for metastability in 
CO;'. However, an experimental preparation and observation of those long-living low- 
lying vibrational states trapped behind the potential barriers of the electronic ground state 
seems not to be an easy task. Most of the ground-state ions produced and recorded in 
experiments can be expected to decay by dissociative tunnelling from their highly excited 
vibronic motion. Although the agreement within the theoretical levels and with the relative 
experimental energies of the lower part of the vertical excitation spectrum seems acceptable, 
further calculations with improved accuracy would be helpful. More generally. a detailed 
investigation of the structure of the low-lying PESS should not only be of interest for the 
experiments on COP, but may also lead to deeper insight into the binding and stability 
properties of heteronuclear polyatomic dications. 
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